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Summary

The automatic recovery of a program’s high-level representation from its binary ver-
sion is a well-studied problem in programming languages. However, most of the
solutions to this problem are based on purely static approaches: techniques such as
dataflow analyses or type inference are used to convert the bytes that constitute the
executable code back into a control flow graph (CFG). This paper departs from such
a modus operandi to show that a dynamic analysis can be effective and useful, both
as a standalone technique, and as a way to enhance the precision of static approaches.
The experimental results provide evidence that completeness, i.e., the ability to con-
clude that the entire CFG has been discovered, is achievable on many functions
that are part of industry-strong benchmarks. Experiments also indicate that dynamic
information greatly enhances the ability of DYNINST, a state-of-the-art binary recon-
structor, to deal with code stripped of debugging information. These results were
obtained with CFGGRIND, a new implementation of a dynamic code reconstructor,
built on top of VALGRIND. When applied to CBENCH, CFGGRIND is 9% faster than
CALLGRIND, VALGRIND’s tool used to track targets of function calls; and 7% faster
in SPEC CPU2017. CFGGRIND recovers the complete CFG of 40% of all the proce-
dures invoked during the standard execution of programs in SPEC CPU2017, and 37%
in CBENCH. When combined with CFGGRIND, DYNINST finds 15% more CFGs for
CBENCH, and 7% more CFGs for SPEC CPU2017. Finally, CFGGRIND is more than
7 times faster than DCFG, a CFG reconstructor from Intel, and 1.30 times faster than
BFTRACE, a CFG reconstructor used in research. CFGGRIND is also more precise
than these two tools, handling operating system signals, shared code in functions, and
unaligned instructions; besides supporting multi-threaded programs, exact profiling
and incremental refinements.
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1 INTRODUCTION

The Control Flow Graph (CFG)1, p.525 is a fundamental structure supporting the analysis and optimization of programs. A CFG
is a directed graph where the vertices represent basic blocks. A basic block is a maximal sequence of instructions without
branches, except at the end. Edges in the CFG denote possible program flows. Since its introduction in the 70’s, likely due to the
work of Frances Allen2, CFGs have emerged as a mandatory program representation adopted in compilers, virtual machines and
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program verifiers. In program analyses based on source code, a CFG is produced either directly from that source code or from
some high-level intermediate representation. However, there exists also much interest in recovering the CFG from the program’s
binary representation, as many researchers have demonstrated throughout the 90’s3,4,5,6. However, while the construction of a
CFG from source has a trivial solution, and is routinely performed by compilers, the reconstruction of a CFG from the binary
representation is undecidable. Undecidability is easy to see: indirect branches, plus a simple extension of Rice’s Theorem7,
hinder any algorithm from determining with certainty every possible flow in a program.
There are two ways to recover a CFG from a program’s binary representation. The first approach, henceforth called static,

tries to recover the program flow via static analysis of the binary program, i.e., from its .text section. This is the technique
of choice employed by a number of well-known tools, such as DYNINST 8, BAP 9, JAKSTAB 10, SECONDWRITE 11, IDA PRO 12,
GNUOBJDUMP1, and OLLYDBG2. The second approach, henceforth called dynamic, seeks to construct a CFG out of instruction
traces generated during the execution of a program. The dynamic reconstruction of CFGs is not as wide-spread as its static
counterpart. We know one industrial-strength tool that provides such capability: Yount’s DCFG 13, a software built on top of
Intel’s PIN, and released in 2015. Dynamic CFG builders can also be found as part of different research artifacts14,15, a few of
which are publicly available3.
Static and dynamic approaches yield different results. Whereas the static approach gives a conservative approximation of

the program’s control flow, possibly containing paths that might never be traversed, the dynamic approach gives an under-
approximation of the program flow. Every flow discovered by a dynamic tool is a true path within the execution of the program
analyzed. However, the dynamic technique might miss paths that are not exercised by the inputs used in the reconstruction.
Such differences lead to distinct applications. Static CFG reconstruction is typically used for security analyses16 and binary
optimization17,18. Dynamic reconstruction, in turn, is used to build dynamic slices19,20, and finds services in any situation where
such slices are in need21, such as malware detection, deobfuscation and profiling. Nevertheless, in spite of three decades of
progress in dynamic slicing, the dynamic reconstruction of CFGs is still poorly understood, its benefits are often understated, and
its engineering still leaves much room for improvement. Motivated by such observations, this work brings forward the following
contributions to the recovery of CFGs from binary code:

Completeness: a new definition to quantify the coverage of CFG reconstruction (Section 2) and an empirical evaluation
(Section 5.3) that reveals that a standard execution of the SPEC CPU2017 suite yields complete CFGs for 40% of the
invoked functions. For CBENCH this number is similar: 37%.

Precision: a suite of techniques that, once combined, yield more precise CFGs than the state-of-the-art approaches available
today. Section 3 explains how our techniques support precise profiling information, deal with overlapping instructions
and code shared by different functions, handle signals from the operating system, support multi-threaded programs and
the incremental construction of CFGs from multiple inputs.

Efficiency: new algorithms (Section 4) that support faster reconstruction of CFGs than state-of-the-art dynamic reconstruc-
tors. Our approach is ∼7x faster than DCFG, a tool built over Intel’s PINPLAY, and ∼28% faster than BFTRACE, the
reconstructor from Gruber et al.14. Our efficiency is due to extensive use of caching, as Section 5.2 shows.

Complementarity: the demonstration that static and dynamic analyses can be combined to generate more complete CFGs.
Section 5.3 shows that the combination of our technique with DYNINST, a state-of-the-art static CFG builder8, increases
coverage in CBENCH from 42% to 57%, and in SPEC CPU2017 from 39% to 46%.

The relevance of the techniques introduced in this paper are demonstrated in CFGGRIND (https://github.com/rimsa/
CFGgrind), a dynamic CFG reconstructor. CFGGRIND is mature enough to be used on every program of SPEC CPU2017. It
supports the reconstruction of CFGs for programs that run in parallel. It also admits incremental construction of CFGs, meaning
that a partial CFG built during one run of the program can be retrofitted into a new execution with different inputs in order to
complement it. Thus, if new paths are traversed, more information is added to the CFG. This feature is specially important for
programs that require multiple runs to construct a complete CFG. CFGGRIND can be used in tandem with DYNINST, a static
binary analyzer, allowing it to discover the target of dynamic jumps, and to handle difficult code sections that would be missed
in programs stripped of symbols and debugging information. Additionally, CFGGRIND provides exact profiling information.

1GNUOBJDUMP is a disassembler for GNU Linux. To know more, see https://www.gnu.org/software/binutils/
2OLLYDBG is a disassembler for Microsoft Windows. To know more, see http://www.ollydbg.de/.
3As an example, tools available at https://docs.angr.io/, and https://github.com/toshipiazza/LLVMCFG provide some limited form of CFG reconstruction.

https://github.com/rimsa/CFGgrind
https://github.com/rimsa/CFGgrind
https://www.gnu.org/software/binutils/
http://www.ollydbg.de/
https://docs.angr.io/
https://github.com/toshipiazza/LLVMCFG


Rimsa ET AL 3

Contrary to sampling based techniques, it tracks how many times every instruction of the target program was executed, respect-
ing the equity of flows: the number of program flows that enter any basic block equals the number of flows that leave it. With
this article, we close two years of implementation effort. A first summary of this effort appeared in a paper that we have pre-
viously published at the Brazilian Symposium on Programming Languages22. That first publication exists in Portuguese only,
and describes the algorithms that CFGGRIND uses to reconstruct CFGs. This new work, in turn, now available in a language
more widely accessible, describes, in addition to those algorithms, several experiments that demonstrate how CFGGRIND can be
effectively used. Moreover, it explains in details how the techniques that we introduce let CFGGRIND outperform state-of-the-art
dynamic CFG reconstructors available today.

2 PRELIMINARY DEFINITIONS

The definition of a CFG is readily available in any compiler textbook; however, given its central role in this paper, this section
revisits it. This formalism might differ from standard definitions because it uses a number of terms that are necessary to explain
the CFG reconstruction algorithm in Section 4. The building blocks of a CFG are instructions. In the binary representation of a
program, each instruction is bound to an address. Each instruction also has an associated textual representation, e.g. push %rbp.
An instruction can be formally defined as follows:

Definition 1. An instruction is a tuple I = (@addr, size, type, text), where @addr is the address of I in memory; size is
the space that I occupies, measured in bytes; type represents a class to which I belongs; and text is the assembly textual
representation of I . For the purposes of this paper, instructions are classified according to their effect on the flow of control of
the program. Therefore an instruction belongs to one of the following types:

standard: flows to the next instruction;

jump(@target, mode: (direct | indirect)): unconditionally jumps to@target address, either directly or indirectly;

branch(@target, @fallthrough, mode: (direct | indirect)): conditionally branches to@target or
@fallthrough address, either directly or indirectly.

call(@target, @fallthrough, mode: (direct | indirect)): invokes the function stored at the @target address, either directly or
indirectly;

return: transfers control back to caller;

The standard instructions flow the execution to the instruction immediately after it. The jump, branch and call instructions
can transfer control flow directly — the address is embedded in the instruction itself (e.g.: jmp @addr); or indirectly — the
address is computed either from registers or memory (e.g.: jmp %rax). A NIL value is used as the @target address in case of
indirect control flows. A return instruction transfers the execution back to the caller using the address immediately after the
corresponding function call; hence, it behaves like an indirect branch. A return instruction is usually used to terminate a function,
but it can also be used for irregular control flows, either maliciously or not. The tuple (@0x400580, 2, branch(@0x40058c,
@0x400582, direct), ’jg 0x40058c’) is an example of an instruction.

Definition 2. A group is an ordered sequence of instructions S = {I1, I2,… , In} containing at least one instruction (|S| > 0).
The instructions in a group are consecutive in the program (In+1.@addr = In.@addr+In.size). The first instruction of a group
is the leader. The last instruction is the tail. The leader is either the first instruction in a program, the target of a jump, branch or
call, or the fall-through instruction of a non-taken branch. Instructions of type jump, branch, call and return cannot be followed
by any other instruction.

Instructions are executed in order unless the program flow reaches an operation that diverts execution. Therefore, groups can
be formed according to Definition 2 by tracing the sequential execution of instructions from a leader to a tail. The target of a tail
instruction will be the leader of a next group to be formed. Thus, chains of groups are created during runtime. The sequence of
instructions {(@0x400597, 1, standard, ’leaveq’), (@0x400598, 1, return, ’retq’)} is an example of group, assuming that the
program flow is diverted to@0x400597 at some point during execution.

Definition 3. A Control Flow Graph (CFG) is a connected, directed graph G = (V ,E), where:
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• A node n ∈ V must be in one of the following categories:

entry: marks the start of the CFG.

block(group, calls, signals): is a basic block that contains:

a group, according to Def. 2;
a map of calls that associates the addresses of functions with pairs (CFG, count). The first element in the pair is

the CFG of a function, and the second is the number of times that function was invoked by a call instruction in
the group.

a map of signals, similar to the map of calls, except that keys are signal ids, and the CFG, in the pair (CFG, count)
is a signal handler with how many times it was invoked.

phantom(@addr): is an undiscovered node represented by its address.

exit: marks the return of control to the caller of this CFG.

halt: marks the stop of the execution of the program — no further instructions can be executed from this point forward.

• An edge (n1, n2, count) ∈ E connects two nodes, n1 and n2 (n1, n2 ∈ V ), with its execution count for profiling information,
count ∈ ℕ, iff:

One of the following conditions is true:

1. The tail of n1 is not an unconditional jump and the leader of n2 immediately follows the tail of n1 in program
order.

2. The leader of n2 is the target of a branch or jump instruction that is the tail of n1.

And count is:

1. Zero, iff n2 is a phantom node, or when profiling information is not required.
2. A positive integer with the exact count of how many times this edge was visited during execution.

• Phantom, exit and halt nodes have no successors. The entry node has no predecessors. Thus, given an edge (n1, n2, count) ∈
E, n1 ∉ {pℎantom, exit, ℎalt} and n2 ∉ {entry}.

During the reconstruction of a CFG, the algorithm may process branches whose un-taken target has not been visited thus far.
These targets are represented by phantom nodes.

Example 1. Figure 1(a) shows the function FMAP written in C, and Figures 1(b,c) show two snapshots of FMAP’s CFG. This
function receives two parameters: an integer x; and a pointer to a function that returns an integer. It performs an indirect function
call if x is greater than zero. For this example, consider that function inc—not shown in Fig. 1(a) —was called. The filled oval
in Figures 1(b,c) are entry nodes. The double filled ovals represent exit nodes. A double filled square denotes the halt node. Note
that there is only one exit node and/or halt node per CFG. Functions with multiple exit points, either that terminate the function
or terminate the program, must be connected to their respective exit or halt nodes. Figure 1(b) contains three basic blocks, each
one with a group of instructions. The block at address@0x40058c holds that a call to function INC was invoked one time. This
target is the value stored in the function pointer *op. If FMAP is called with other arguments, more target functions will appear
in the calls section of this block. Neither block contains invocations of signal handlers, and thus are not shown. The phantom
nodes are represented with dashed outlines. The question mark represents possible unknown flows when the last instruction in
the block is either a jump, branch or call node with indirect mode. Note that dashed edges are used to connect question marks,
but they serve merely as an indication of an indirect flow for this block.

Previous works have modelled the entire program as a single CFG6,23,8. The boundary of functions can still be recorded in
such representation, as long as edges in the CFG are marked as intraprocedural or interprocedural. This formalism departs from
that convention: a CFG, according to Definition 3, represents the instructions of a single function. Formalizing a CFG in this
way makes it easier to combine the CFG representation with information extracted from compilers such as GCC and LLVM. In
particular, representing each function as a separate CFG facilitates the task of tracking the entry and exit points of procedures.
In rare occasions, the binary representation of a program can be built in such a way that a set of instructions can be executed
through calls to multiple addresses. Meng and Miller solved this problem by allowing a CFG to have multiple entry points8.
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block
 

[group]
0x40056d [1]: push %rbp
0x40056e [3]: mov %rsp,%rbp
0x400571 [4]: sub $0x10,%rsp
0x400575 [3]: mov %edi,-0x4(%rbp)
0x400578 [4]: mov %rsi,-0x10(%rbp)
0x40057c [4]: cmpl $0x0,-0x4(%rbp)
0x400580 [2]: jg 0x40058c <fmap+0x1f>

block
 

[group]
0x400597 [1]: leaveq
0x400598 [1]: retq

phantom
 

[addr]
0x400582

block
 

[group]
0x40058c [3]: mov -0x4(%rbp),%edx
0x40058f [4]: mov -0x10(%rbp),%rax
0x400593 [2]: mov %edx,%edi
0x400595 [2]: callq *%rax
[calls]
0x40055d {1} (inc)

?

1

1
0

1

1

block
 

[group]
0x40056d [1]: push %rbp
0x40056e [3]: mov %rsp,%rbp
0x400571 [4]: sub $0x10,%rsp
0x400575 [3]: mov %edi,-0x4(%rbp)
0x400578 [4]: mov %rsi,-0x10(%rbp)
0x40057c [4]: cmpl $0x0,-0x4(%rbp)
0x400580 [2]: jg 0x40058c <fmap+0x1f>

block
 

[group]
0x400582 <+5>: mov $-0x1,%edi
0x400587 <+5>: callq 0x400450 <exit>
[calls]
0x400450 {1} (exit)

block
 

[group]
0x40058c [3]: mov -0x4(%rbp),%edx
0x40058f [4]: mov -0x10(%rbp),%rax
0x400593 [2]: mov %edx,%edi
0x400595 [2]: callq *%rax
[calls]
0x40055d {1} (inc)

?

2

1

1

1

1

block
 

[group]
0x400597 [1]: leaveq
0x400598 [1]: retq

1

int fmap(int x,
      int (*op)(int)) {
  if (x <= 0)
    exit(-1);

  return (*op)(x);
}

(a)

(b) (c)

FIGURE 1 (a) Example program. (b) CFG after first call with positive argument for x. (c) Refined CFG after second call with
negative argument for x.

We enforce a constraint that a CFG must have a single point of entry. Thus, in CFGGRIND two different CFGs may execute a
common subset of instructions. This duplication of information, however, has no penalties in the execution. Example 1 illustrate
these concepts.

Completeness
When a CFG contains an indirect jump, an indirect branch, or an indirect call, it is not possible to ensure that all possible
execution paths have been discovered. Future executions of the program with different workloads may follow new execution
paths. Also, the presence of phantom nodes indicates the existence of paths that have not yet been discovered. The concept of
CFG completeness, for the purposed of dynamic reconstruction, can be defined as follows:

Definition 4. Given a control flow graph G = (V ,E) (Definition 3), G is said to be complete iff, V contains an entry and at
least an exit or a halt node; and ∀n ∈ V , the following conditions are true:

1. the successors of n are in V .

2. n ≠ pℎantom.

3. if n is a block then the mode of the tail of the group of n is direct.

ACFG is complete if all its paths are known. Definition 4 uses amore restrictive notion of completeness: even if all indirections
are proven to be constrained inside the same CFG, the existence of indirect jumps still classifies this CFG as incomplete.

Example 2. The examples in Figures 1(b-c) present an incomplete CFG because they contains both a phantom node and a block
with an indirect call. Note that edges connecting phantom nodes, although known to exist, are never executed. Thus, they have
a count of zero.

This classification is useful in the evaluation of complex code executions. For instance, malware programs may deliberately
hide some part of their execution. In order to do so, they rely on constructs such as indirect jumps or calls to avoid exposing the
address of the offending code. In such cases, CFGGRIND will mark the CFGs as incomplete. In other words, code that contains
indirect control flowwill invariably contain either phantom nodes or an indirect marking— the questionmark in Figure 1. Further
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executions of the same program, with different inputs, might improve coverage; hence, reducing the number of incomplete CFGs.
The reconstruction of dynamic CFGs is based on successive refinements. Example 3 shows how re-execution refines CFGs.

Example 3. Figure 1(c) shows the CFG that results from a new activation of the same function, but with different arguments. In
this case, the branch at@0x400580 is not taken and leads to the discovery of the block at address@0x400582. In this example,
the phantom node becomes a block node that is connected to the halt node.

3 THE NEED FOR CFG RECONSTRUCTION TOOLS

There are at least two tools that perform the dynamic reconstruction of control flow graphs, namely, DCFG 13 and BFTRACE 14.
DCFG4 is part of PINPLAY5 —a framework for deterministically replaying a program execution. PINPLAY is publicly available,
albeit closed-source. BFTRACE, in turn, is the first part of a four-staged implementation of dependence analysis14. It builds
intraprocedural control flow graphs and interprocedural call graphs. Revisiting these technologies, the need for further work
in this area stems from two simple observations about state-of-the-art tools. On the one hand, the most precise of these tools,
DCFG, incurs a heavy performance slowdown that makes its usage prohibitive in programs with long execution traces. On the
other hand, BFTRACE, the faster dynamic analyzer, leaves toomuch information out from the CFGs that it reconstructs—namely,
precise profiling data. This paper shows that it is possible to reconstruct CFGs faster than BFTRACE, and still more exactly than
DCFG. Section 5 provides empirical evidence to support this efficiency claim. This section explains why CFGGRIND’s CFGs
are more complete than similar structures produced by the other tools.

TABLE 1 Qualitative comparison of the different tools considered in this paper.

Feature CFGGRIND BFTRACE DCFG Section

Completeness Reported Absent Absent 3.1
Program exit Present Absent Absent 3.1
OS Signals Tracked Absent Imperfect 3.1
Edge count Present Absent Present 3.2
Flow equity Present Absent Imperfect 3.2
Incremental analysis Present Absent Absent 3.3
Multi-threading Handled Not handled Handled 3.4
Overlapping instructions Different Different Split 3.5
Shared code in functions Duplicated Duplicated Shared 3.5

Table 1 presents a summary comparison of the three tools and indicates the subsection where each feature is discussed.
Beware, however, that these tools are not strictly equivalent: being conceived with different goals, each of them has a distinct
representation for CFGs. For instance, BFTRACE is part of a larger system whose purpose is to track dependences between
memory regions in order to advise for or against program parallelization. Nonetheless, BFTRACE is a standalone application
whose sole purpose is to reconstruct a program’s CFGs and call graph. DCFG is also part of a larger system, PINPLAY, which
logs program state to allow re-execution, e.g., to support debugging. The code of DCFG is not open; hence, we cannot affirm
that its only purpose is to reconstruct CFGs for PINPLAY. Nevertheless, from what we could infer from DCFG’s documentation,
such seems to be the case.

4DCFG: https://software.intel.com/en-us/articles/pintool-dcfg
5https://software.intel.com/en-us/articles/program-recordreplay-toolkit
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3.1 On the Precise Representation of CFGs
BFTRACE, DCFG and CFGGRIND adopt different representations for the program’s control flow graph. CFGGRIND and
BFTRACE associate a CFG for each identified program function, while DCFG provides a single, flattened, CFG for the entire
program. However, the CFGs produced by CFGGRIND have a few features that are absent from the CFGs produced by at least
one, and sometimes both, of the other tools.
First, CFGGRIND reports the completeness, a notion formalized in Definition 4, of a CFG. Neither DCFG nor BFTRACE let

users know if a CFG had all its basic blocks visited during the execution of the program. CFGGRIND provides this functionality
by augmenting the concept of a CFG with phantom nodes and annotations for indirect flows.
Second, the precise recognition of exit points is another featuremissing inDCFG and BFTRACE. These tools, like CFGGRIND,

track paths between different functions along the program’s call graph. However, in both DCFG and BFTRACE it is not possible
to know if a basic block ends only a function, or terminates the entire program. Our experience using CFGGRIND as a debugger
tells us that such differentiation is important to correctly identify the points where no other instructions can be executed.
Third, CFGGRIND tracks signal events that may occur during the program execution. Signals are particularly difficult to handle

because they do not originate from specific instructions, e.g., call or jmp. Some instructions, such as div, mod, store and load
can produce signals (SIGSEGV, SIGILL, SIGFPE, etc). Signals can come from outside the program, e.g., due to interruptions
(SIGINT), or can be scheduled to happen, e.g., due to alarms (SIGALRM). Example 4 compares the support for this feature in
CFGGRIND in contrast with the other tools.

Example 4. Figure 2 shows a sample program that has a signal handler (a) with its respective assembly code (b), and shows how
signals are processed by CFGGRIND (c) and DCFG (d). When a signal handler is activated, BFTRACE crashes and is unable to
produce the CFGs for such a program. CFGGRIND records the address of the function handler called with its associated signal
id at the basic block where the event originated. DCFG creates a special edge marking the function handler as a context switch,
but without an associated signal id. Also, DCFG fails to track reliably the correct execution flow after the return of the signal
handler. In Figure 2(d) the edge at address@0x400610 in BB 28, is misidentified as a fall-through edge, whereas it should have
been marked as a return edge. Furthermore, the target of this edge points to a special Unknown node due to an invalid target
address calculated at this point. Note that if a signal handler is never activated, none of the three tools are able to find its CFG.

3.2 On Exact Profiling Information
A profiler provides users with either exact or approximate information. In the latter category we have all the sampling-based
profilers. In the former, we have instrumentation and emulation based profilers. CFG reconstructors can be used as a supporting
infrastructure to build exact profilers. To fulfill this goal, three features are desirable: edge count, call count and signal count.
Edge count gives the number of times each edge in the CFG was traversed by the program flow. Call count provides the number
of times each function has been called during the execution of the program. Signal count holds similar information, but for signal
handlers instead of functions calls. Both, CFGGRIND and DCFG provide these three features. They are absent in BFTRACE.
Edge counts, when available, should be subject of the Law of Flows, which Tarjan24, among other graph theoreticians, have

postulated as: “the sum of incoming flows must equal the sum of outgoing flows on each vertex of a directed graph, except on
its start and end nodes." In the context of this work, the count in the incoming edges must add up to the sum of the counts of the
outgoing edges for any basic block traversed during program execution. The two exceptions are the program entry point, whose
in-degree is zero, and the program exit point, whose out-degree is zero. This principle is true for CFGGRIND; however, it is not
entirely true for DCFG.

Example 5. Figure 3(a) shows an example program where the compiler can optimize the invocation of function add depending
on its calling context. As can be observed by the assembly code produced in Fig 3(b), the call in function normxwas optimized to
use a jump instruction. However, the compiler was unable to use the same strategy for the call in function twice. Thus, function
add is used in two distinct contexts. Similar situation is commonly observed in code in general. For example, LIBGFORTRAN
(version 3.0.0) has some data transfer functions, e.g. transfer_integer or transfer_real, to copy data between different
container types. These functions are used externally — using call instructions — , but are also used internally — using jump
instructions after tail call optimization. Therefore, CFG reconstruction tools must be able to handle properly such cases. The
three CFGs in Fig. 3(c) were produced both by CFGGRIND and by BFTRACE. Each CFG has its own distinctive copy of a shared
block — the block with address @0x400507 is duplicated in the CFGs for normx and add. DCFG on the other hand uses a
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BB 25
addr=0x4005f0
num-instrs=2
executions=1

EDGE2007
DIRECT_CALL

executions=1

BB 24
addr=0x4005e0
num-instrs=2
executions=1

EDGE1024
RETURN

executions=1

BB 27
addr=0x400601
num-instrs=3

executions=6701316

EDGE1359
DIRECT_UNCONDITIONAL_BRANCH

executions=1

BB 26
addr=0x4005fb
num-instrs=1

executions=6701316

EDGE939
CONTEXT_CHANGE

executions=1

EDGE2
FALL_THROUGH

executions=6701315

EDGE1
DIRECT_CONDITIONAL_BRANCH

executions=6701315

BB 28
addr=0x40060b
num-instrs=2
executions=1

EDGE2033
FALL_THROUGH

executions=1

Unknown

EDGE1889
FALL_THROUGH

executions=1

EDGE2175
CONTEXT_CHANGE

executions=1

(d)

volatile int g = 1;

void handleAlarm(int sigid) {
    g = 0;
}

long count() {
    long c = 0;
    while (g)
        ++c;
    return c;
}

(a)

function handleAlarm:
0x4005e0 <+0>:  movl  $0x0,0x200a52(%rip)
0x4005ea <+10>: retq
function count:
0x4005f0 <+0>:  movq  $0x0,-0x8(%rsp)
0x4005f9 <+9>:  jmp   0x400601
0x4005fb <+11>: addq  $0x1,-0x8(%rsp)
0x400601 <+17>: mov   0x200a35(%rip),%eax
0x400607 <+23>: test  %eax,%eax
0x400609 <+25>: jne   0x4005fb
0x40060b <+27>: mov   -0x8(%rsp),%rax
0x400610 <+32>: retq
function main:
0x4004c0 <+0>: ...
0x4004df <+31>: callq 0x4005f0 <count>
0x4004e4 <+36>: ...

(b)

(c)

count

block
 

[group]
0x4005f0 [9]: movq $0x0,-0x8(%rsp)
0x4005f9 [2]: jmp 0x400601

block
 

[group]
0x400601 [6]: mov 0x200a35(%rip),%eax
0x400607 [2]: test %eax,%eax
0x400609 [2]: jne 0x4005fb

1

block
 

[group]
0x40060b [5]: mov -0x8(%rsp),%rax
0x400610 [1]: retq

block
 

[group]
0x4005fb [6]: addq $0x1,-0x8(%rsp)
[signals]
14: 0x4005e0 {1} (handleAlarm)

1

21387547

21387547

1

1

FIGURE 2 (a) Example program with alarm handler. (b) Assembly code for this example. (c) CFG obtained with CFGGRIND.
(d) Simplified CFG obtained with DCFG, showing “unknown" node that emerges after signal handling.

single block (BB 17) in both contexts. Consequently, it is not possible to determine if the transfer of control happened due to
a function call or due to an unconditional branch. In Figure 3(d), there are two return edges going out of BB 17, but only one
incoming call — the other return edge is due to the jump from BB 18.

3.3 On the Incremental Construction of CFGs
Dynamic analyses require good datasets: the more inputs are available for a program, the more information can be inferred from
the program’s behavior. This principle applies to the dynamic reconstruction of CFGs. However, neither DCFG nor BFTRACE
support the incremental construction of CFGs. In other words, it is not possible to combine events observed in two different
executions of a program to build a refined version of its CFGs. CFGGRIND provides this functionality, as Example 1 illus-
trates. Thus, additional program inputs lead to successive refinements of this program’s CFG; hence, increasing code coverage.
Section 5.4 quantifies the benefits of incremental construction in the CBENCH suite. More details on how CFGGRIND supports
incremental constructions of CFGs can be found in Section 4.2.

3.4 On the Execution of Multi-Threaded Programs
A parallel program can span multiple threads during its execution. Both CFGGRIND and DCFG supports tracking the execution
of such threads; however, BFTRACE crashes in this scenario. DCFG provides detailed profiling information, where each edge in
the control flow graph contains the execution count for each thread separately; CFGGRIND compounds the result of all threads
as a total for each edge.
CFGGRIND leverages the serialization performed natively by VALGRIND, where the execution of multi-threaded programs

is converted into a single-threaded application by using VALGRIND’s own scheduling policy. CFGGRIND tracks each thread’s
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context switch to account for the correct execution flow of programs. More details about the implementation of this feature can
be found in Section 4.3. It is unclear how DCFG works internally to support this feature.

3.5 On Other Assembly Idiosyncrasies
Although low-level assembly code is usually derived from high-level languages via a compilation chain, some aggressive opti-
mizations can dramatically change the structure of the target code. For instance, optimizations might force code sharing between
multiple functions. Also, some sections of assembly code can have overlapping instructions. Overlapping happens mostly in
hand-crafted code, which either implements some optimization or encodes malware. In this last category, we have examples of
return oriented programming attacks25. In all these cases, binary code presents idiosyncrasies that a reconstructor must handle.

Example 6. Figure 4 exemplifies the first situation: instructions shared between functions. A snippet of an object dump of
mapped symbols available in GLIBC (version 2.17) for two function: __read and __read_nocancel. The former function is
mapped between addresses @@0xeb86a-@0xeb88c; while the latter is mapped between @0xeb860-@0xeb8d7. Since there
is an overlap of these two ranges, some instructions are shared by these functions. DCFG approaches this situation using an
unique node that is shared across multiple parts of the entire control flow graph. This node can be interpreted as if a section of
code has multiple access points. On the other hand, CFGGRIND and BFTRACE build a CFG for each function, which means that
each CFG has its own copy of a block that contains these shared instructions. The same approach is employed by CFGGRIND

static
int add(int x, int y) {
     return x + y;
}

int normx(int x, int y) {
    if (x < 0)
        x *= -1;
    return add(x, y);
}

int twice(int x, int y) {
    return add(x, y) * 2;
}

(a)

add function:
0x400507 <+0>: lea   (%rdi,%rsi,1),%eax
0x40050a <+3>: retq
normx function:
0x40050b <+0>: mov   %edi,%eax
0x40050d <+2>: sar   $0x1f,%eax
0x400510 <+5>: xor   %eax,%edi
0x400512 <+7>: sub   %eax,%edi
0x400514 <+9>: jmp   0x400507 <add>
twice function:
0x400516 <+0>: callq 0x400507 <add>
0x40051b <+5>: add   %eax,%eax
0x40051d <+7>: retq
main function:
0x40051e <+0>:  ...
0x400540 <+34>: callq  0x40050b <normx>
0x400545 <+39>: ...
0x40054c <+46>: callq  0x400516 <twice>
0x400551 <+51>: ...

(b)

BB 17
addr=0x400507
num-instrs=2
executions=2

BB 20
addr=0x40051b
num-instrs=2
executions=1

EDGE1820
RETURN

executions=1

EDGE1818
RETURN

executions=1

BB 18
addr=0x40050b
num-instrs=5
executions=1

EDGE1927
DIRECT_UNCONDITIONAL_BRANCH

executions=1

BB 19
addr=0x400516
num-instrs=1
executions=1

EDGE1373
DIRECT_CALL

executions=1

EDGE2405
CALL_BYPASS

executions=0

EDGE1247
RETURN

executions=1

EDGE1945
DIRECT_CALL

executions=1

EDGE1634
DIRECT_CALL

executions=1

(d)(c)

block
 

[group]
0x400507 [3]: lea (%rdi,%rsi,1),%eax
0x40050a [1]: retq

1

1

add

normx

block
 

[group]
0x40050b [2]: mov %edi,%eax
0x40050d [3]: sar $0x1f,%eax
0x400510 [2]: xor %eax,%edi
0x400512 [2]: sub %eax,%edi
0x400514 [2]: jmp 0x400507 <add>

block
 

[group]
0x400507 [3]: lea (%rdi,%rsi,1),%eax
0x40050a [1]: retq

1

1

1

twice

block
 

[group]
0x400516 [5]: callq 0x400507 <add>
[calls]
0x400507 {1} (add)

block
 

[group]
0x40051b [2]: add %eax,%eax
0x40051d [1]: retq

1

1

1

FIGURE 3 (a) Example program with two distinct calls to function add. (b) Assembly code with a tail call optimization for this
example. (c) CFGs obtained with CFGGRIND for each function. (d) Simplified CFG obtained with DCFG for this program.
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to support functions with multiple entry points. Each entry point spawns a different CFG with its own copies of the shared
instructions. Thus, every CFG in CFGGRIND has only a single entry point.

FIGURE 4 Objdump snippet for functions __read and __read_nocancel, from glibc 2.17, that share code. To see that
overlapping happens, notice that [eb86a16, eb86a16 + 2216] ∩ [eb86016, eb86016 + 7716] ≠ ∅.

000eb86a l F .text 00000022 __read_nocancel
000eb860 w F .text 00000077 __read

Example 7. Figure 5 exemplifies the second situation: a block of contiguous bytes can be interpreted as different sequences of
assembly instructions. Such situation occurs when there is a jump or call to an unaligned target address. Fig. 5(b) shows that
CFGGRIND and BFTRACE obtained the same CFG, while Fig. 5(b) shows that DCFG splits the nodes incorrectly, leading to an
unrealistic execution flow. A call to address @0x4004b7 activates Sequence 1 with two instructions. Its last instruction is a
relative jump to the unaligned address@0x4004b8. Thus, Sequence 2 is activated. Of the three instructions of this sequence,
the last one is never executed due to the return instruction. CFGGRIND and BFTRACE capture the correct behavior by treating
the instructions individually in the blocks. However, DCFG treats the block as a range of addresses, disregarding how the
instructions are read inside this range. This modus-operandi leads to the flawed split at node BB 16. Although seemly artificial,
the unaligned access that this example illustrate is a key component in several real-world ROP-based program exploits, some of
which are catalogued in the CVE database26,27,28.

block
 

[group]
0x4004b7 [5]: mov $0xc3c03148,%eax
0x4004bc [2]: jmp 0x4004b8

block
 

[group]
0x4004b8 [3]: xor %rax,%rax
0x4004bb [1]: retq

1

1

1

BB 16
addr=0x4004b7
num-instrs=1
executions=1

BB 17
addr=0x4004b8
num-instrs=2
executions=2

EDGE1338
FALL_THROUGH

executions=1

BB 18
addr=0x4004bc
num-instrs=1
executions=1

EDGE1694
FALL_THROUGH

executions=1

EDGE1690
RETURN

executions=1

EDGE1653
DIRECT_UNCONDITIONAL_BRANCH

executions=1

EDGE1748
DIRECT_CALL

executions=1

0x4004bd 0xfa

0x4004bc 0xeb

0x4004bb retq0xc3

0x4004ba 0xc0

0x310x4004b9

0x480x4004b8

0xb80x4004b7

Sequence 2Sequence 1ByteAddress

jmp .-4

mov $0xc3c03148, %eax xor %rax, %rax

jmp .-4

(a)

(c)(b)

overlap

FIGURE 5 (a) Hand-crafter example of two overlapping sequences of assembly instructions. (b) CFG obtained with CFGGRIND
and BFTRACE. (d) Simplified CFG obtained with DCFG.
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4 DYNAMIC RECONSTRUCTION OF CFGS

This section uses pseudo-code to explain the dynamic reconstruction of CFGs. CFGGRIND, the tool that prototypes the ideas
presented in this paper, is implemented in C, on top of VALGRIND. However, for ease of understanding, the algorithms in this
section are presented in a Python-like format. Executable versions of these algorithms can be downloaded from CFGGRIND’s
repository.

4.1 The Machine
In the context of this work, amachine is any technology, be it based on interpretation, emulation or instrumentation, that produces
traces representing the execution of programs. Typical machines include tools such as QEMU, PIN, GDB and VALGRIND. The
instructions that appear in a trace are partitioned into groups according to Definition 2. Traces can be processed online, as soon
as they are produced by the machine; or offline, as a post-morten analysis. The algorithm described in Section 4.2 is agnostic to
this processing mode. CFGGRIND, implemented in VALGRIND, uses the online approach. The following example illustrates the
notion of a trace.

01: int total(int array[],
02:         int size) {
03:     int i = 0;
04:     int sum = 0;
05:     while (i < size) {
06:         sum += array[i];
07:         i++;
08:     }
09:     return sum;
10: }
11: 
12: int main(int argc,
13:         char* argv[]) {
14:     int a[] = { 10 };
15:     return total(a, 1);
16: }

(a)

0x400492 <+0>:  push   %rbx
0x400493 <+1>:  mov    %rdi,%rbx
0x400496 <+4>:  mov    $0x0,%eax
0x40049b <+9>:  mov    $0x0,%ecx
0x4004a0 <+14>:  cmp    %esi,%ecx
0x4004a2 <+16>:  jge    0x4004ae <total+28>
0x4004a4 <+18>:  add    (%rbx),%eax
0x4004a6 <+20>:  add    $0x4,%rbx
0x4004aa <+24>:  inc    %ecx
0x4004ac <+26>:  jmp    0x4004a0 <total+14>
0x4004ae <+28>:  pop    %rbx
0x4004af <+29>:  retq
-------------------------------------------
0x4004b0 <+0>:  sub    $0x10,%rsp
0x4004b4 <+4>:  movl   $0xa,0xc(%rsp)
0x4004bc <+12>:  lea    0xc(%rsp),%rdi
0x4004c1 <+17>:  mov    $0x1,%esi
0x4004c6 <+22>:  callq  0x400492 <total>
0x4004cb <+27>:  add    $0x10,%rsp
0x4004cf <+31>:  retq

(b)

FIGURE 6 (a) Program written in C. (b) static assembly representation of the program.

(0x400492, 1, standard, 'push %rbx');
(0x400493, 3, standard, 'mov %rdi,%rbx');
(0x400496, 5, standard, 'mov $0x0,%eax');
(0x40049b, 5, standard, 'mov $0x0,%ecx');
(0x4004a0, 2, standard, 'cmp %esi,%ecx');
(0x4004a2, 2, branch(0x4004ae, 0x4004a4), 'jge 0x4004ae');

Group 2

(0x4004a4, 2, standard, 'add (%rbx),%eax');
(0x4004a6, 4, standard, 'add $0x4,%rbx');
(0x4004aa, 2, standard, 'inc %ecx');
(0x4004ac, 2, jump(0x4004a0), 'jmp 0x4004a0');

Group 3

(0x4004b0, 4, standard, 'sub $0x10,%rsp');
(0x4004b4, 8, standard, 'movl $0xa,0xc(%rsp)');
(0x4004bc, 5, standard, 'lea 0xc(%rsp),%rdi');
(0x4004c1, 5, standard, 'mov $0x1,%esi');
(0x4004c6, 5, call(0x400492, 0x4004cb), 'callq 0x400492');

Group 1

(0x4004a0, 2, standard, 'cmp %esi,%ecx');
(0x4004a2, 2, branch(0x4004ae, 0x4004a4), 'jge 0x4004ae');

Group 4

(0x4004ae, 1, standard, 'pop %rbx');
(0x4004af, 1, return, 'retq');

Group 5
(0x4004cb, 4, standard, 'add $0x10,%rsp');
(0x4004cf, 1, return, 'retq');

Group 6

FIGURE 7 Execution trace of the program in Figure 6. Instructions are grouped according to Def. 2. Arrows show order in
which groups are processed.
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Example 8. Figure 6 shows a program (a) with two functions and its assembly representation (b). The execution of this program
in a machine produces a trace formed by those assembly instructions. Such trace represents the paths traversed by the execution
of the program. Figure 7 shows the different groups formed by the analysis of this execution trace. The jump, branch and call
instructions in this trace are all direct, and thus the mode of each instruction is omitted. In this example, the body of the while
loop in function total (Lines 5-8) executes only once.

4.2 The Algorithm
Central to the understanding of Algorithms 1-3, is the notion of a state, defined as follows:

Definition 5. A state is a tuple S = (current, callstack). Current is a pair (cfg, working), where cfg is the CFG (G = (V ,E),
Def. 3) currently being reconstructed, and working is one of this CFG’s nodes (working ∈ V ). The callstack is a stack of
(current, @ret_addr) pairs, where @ret_addr is a return address. The callstack’s current pair is similar to the one in the state,
except working must perform a function call (working.tail.type is call), and the @ret_addr is the address of the instruction
immediately after this call (working.tail.type.fallthrough).

During the reconstruction of CFGs, the algorithms discussed in this section operate on a state. The processing of groups, such
as those shown in Fig. 7, leads to changes in this state. Thus, Algorithms 1-3 are state-transition functions that map a state-group
pair into another state (state× group → state). When the algorithm processes a working node in the current CFG, another node
becomes the working node. When the algorithm processes a function call, the current pair is pushed onto the callstack and its
return address is set. A function return to an address matching a @ret_addr in the callstack causes the stack to pop elements
until this point is reached. The current pair associated with this return address is then restored as the current pair of the state.
At initialization, the current is set to NIL and the callstack is empty (S = (NIL, [])).

Example 9. Figure 8 shows the state after each one of the six groups in Figure 7 is processed. In this multi-layer representation,
the front layer presents the current state, e.g., (cfg, working). Underneath layers represent the state’s callstack. The front layer
in Figures 8(a) and 8(f) represents the main function. The front layer in Figure 8(b-e) corresponds to the total function.

The algorithms discussed in this section use a core data structure, the cfg, with the following operations:

• add_node(node): adds a new node to the cfg if this new node is not already there.

• add_edge(src, dst, count): adds a new edge to the cfg from node src to node dst with count as the number of executions.
If the edge already exists, increment the previous execution count by the value of count.

• find_node_with_addr(@addr): searches for a block node with instruction at@addr, or a phantom node at@addr; returns
NIL if not found.

• phantom2block(phantom_node, block_node): replaces the phantom node with the block node, including moving its
predecessors edges to the new node.

• split(block_node, @addr): finds instruction ij with address @addr in the group of the block node such that i1 < ij ≤ in,
moves the instructions {i1,… , ij−1}, and its predecessor to a new block node, and finally connects them with a new edge.

Processing Programs.
Algorithm 1 is the entry point for the process of CFG reconstruction. The algorithm assumes the existence of a global state,
initialized as (NIL, []), that is readily available during processing. This global state can be externally manipulated to support
features such as multi-thread programs and signal handlers (Sec. 4.3). The algorithm receives amachine and amapping of CFGs
indexed by their addresses. The mapping can be either empty or pre-populated with CFGs loaded from a previous run. This is
they key to support incremental construction of CFGs as described in Section 3.3. By loading previously computed CFGs, the
algorithms described in this section can further improve them, as they continue to refine the CFGs as new paths are explored
during the execution.
Algorithm 1 follows a program execution to reconstruct the CFGs dynamically by processing each group obtained from

the machine individually (Lines 2-12). Once the machine halts, i.e. no more groups are generated, the algorithm finalizes the
remaining CFGs by connecting the working nodes, of the state’s current pair or of the callstack if present, to the halt node (Lines
13-17). Finally, Algorithm 1 returns the updated mapping with all reconstructed CFGs at line 17.
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block
 

[group]
0x4004b0 [4]: sub $0x10,%rsp
0x4004b4 [8]: movl $0xa,0xc(%rsp)
0x4004bc [5]: lea 0xc(%rsp),%rdi
0x4004c1 [5]: mov $0x1,%esi
0x4004c6 [5]: callq 0x400492

working

cf
g:

 0
x4

00
4b

0 
(m

ai
n)

1

block
 

[group]
0x4004b0 [4]: sub $0x10,%rsp
0x4004b4 [8]: movl $0xa,0xc(%rsp)
0x4004bc [5]: lea 0xc(%rsp),%rdi
0x4004c1 [5]: mov $0x1,%esi
0x4004c6 [5]: callq 0x400492

working

cf
g:

 0
x4

00
4b

0 
(m

ai
n)

1

block
 

[group]
0x400492 [1]: push %rbx
0x400493 [3]: mov %rdi,%rbx
0x400496 [5]: mov $0x0,%eax
0x40049b [5]: mov $0x0,%ecx
0x4004a0 [2]: cmp %esi,%ecx
0x4004a2 [2]: jge 0x4004aecf

g:
 0

x4
00

49
2 

(t
ot

al
)

working

1

block
 

[group]
0x4004b0 [4]: sub $0x10,%rsp
0x4004b4 [8]: movl $0xa,0xc(%rsp)
0x4004bc [5]: lea 0xc(%rsp),%rdi
0x4004c1 [5]: mov $0x1,%esi
0x4004c6 [5]: callq 0x400492

working

cf
g:

 0
x4

00
4b

0 
(m

ai
n)

1

block
 

[group]
0x400492 [1]: push %rbx
0x400493 [3]: mov %rdi,%rbx
0x400496 [5]: mov $0x0,%eax
0x40049b [5]: mov $0x0,%ecx
0x4004a0 [2]: cmp %esi,%ecx
0x4004a2 [2]: jge 0x4004aecf

g:
 0

x4
00

49
2 

(t
ot

al
)

block
 

[group]
0x4004a4 [2]: add (%rbx),%eax
0x4004a6 [4]: add $0x4,%rbx
0x4004aa [2]: inc %ecx
0x4004ac [2]: jmp 0x4004a0

working

phantom
 

[addr]
0x4004ae

01

block
 

[group]
0x4004b0 [4]: sub $0x10,%rsp
0x4004b4 [8]: movl $0xa,0xc(%rsp)
0x4004bc [5]: lea 0xc(%rsp),%rdi
0x4004c1 [5]: mov $0x1,%esi
0x4004c6 [5]: callq 0x400492

working

cf
g:

 0
x4

00
4b

0 
(m

ai
n)

1

block
 

[group]
0x4004a4 [2]: add (%rbx),%eax
0x4004a6 [4]: add $0x4,%rbx
0x4004aa [2]: inc %ecx
0x4004ac [2]: jmp 0x4004a0

block
 

[group]
0x400492 [1]: push %rbx
0x400493 [3]: mov %rdi,%rbx
0x400496 [5]: mov $0x0,%eax
0x40049b [5]: mov $0x0,%ecx

block
 

[group]
0x4004a0 [2]: cmp %esi,%ecx
0x4004a2 [2]: jge 0x4004ae

cf
g:

 0
x4

00
49

2 
(t

ot
al

)

1

1

1
1

working

phantom
 

[addr]
0x4004ae

0

block
 

[group]
0x4004b0 [4]: sub $0x10,%rsp
0x4004b4 [8]: movl $0xa,0xc(%rsp)
0x4004bc [5]: lea 0xc(%rsp),%rdi
0x4004c1 [5]: mov $0x1,%esi
0x4004c6 [5]: callq 0x400492

working

cf
g:

 0
x4

00
4b

0 
(m

ai
n)

1

block
 

[group]
0x4004a4 [2]: add (%rbx),%eax
0x4004a6 [4]: add $0x4,%rbx
0x4004aa [2]: inc %ecx
0x4004ac [2]: jmp 0x4004a0

block
 

[group]
0x400492 [1]: push %rbx
0x400493 [3]: mov %rdi,%rbx
0x400496 [5]: mov $0x0,%eax
0x40049b [5]: mov $0x0,%ecx

block
 

[group]
0x4004a0 [2]: cmp %esi,%ecx
0x4004a2 [2]: jge 0x4004ae

working

block
 

[group]
0x4004ae [1]: pop %rbx
0x4004af [1]: retq

cf
g:

 0
x4

00
49

2 
(t

ot
al

)

1

1

1
1

1

block
 

[group]
0x4004b0 [4]: sub $0x10,%rsp
0x4004b4 [8]: movl $0xa,0xc(%rsp)
0x4004bc [5]: lea 0xc(%rsp),%rdi
0x4004c1 [5]: mov $0x1,%esi
0x4004c6 [5]: callq 0x400492
[calls]
cfg: 0x400492

block
 

[group]
0x4004cb [4]: add $0x10,%rsp
0x4004cf [1]: retq

working

cf
g:

 0
x4

00
4b

0 
(m

ai
n)

1

1

(a)
(b)

(c) (d)

(e)
(f)

FIGURE 8 State after processing each of the six groups listed by Figure 6.

For each group (Lines 2-12), Algorithm 1 manipulates the state in two phases:
Phase 1 (Lines 4-10): takes an action based on the previous working node. In the absence of the working node, initializes the

first CFG (Lines 4-6). The initial CFG is either fetched from the mapping based on the address of the group’s leader
instruction if existent, or it is created and set in the mapping (Line 5). Then, the state’s current pair is configured with this
CFG and its entry node (Line 6). Otherwise, ensures that working node is a basic block (Line 8) and activates Algorithm 2
(Line 9) passing the type of the tail instruction of the working node and the address of the next instruction of the group.
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Algorithm 1 Process program by handling each group of instructions generated by a machine during execution.
global: state
input: machine, mapping
output: mapping

1: function PROCESS_PROGRAM(machine, mapping)
2: for group in machine.RUN() do
3: @addr = group.leader.addr
4: if not state.current then
5: initial = mapping.GET(@addr) if mapping.HAS(@addr) else mapping.PUT(@addr, CFG())
6: state.current = (initial, initial.entry)
7: else
8: assert state.current.working instanceof Block
9: mapping = PROCESS_TYPE(mapping, state.current.working.group.tail.type,@addr)
10: end if
11: state.current.working = PROCESS_GROUP(state.current.cfg, state.current.working, group)
12: end for
13: while state.current do
14: state.current.cfg.ADD_EDGE(state.current.working, state.current.cfg.halt, 1)
15: state.current = state.callstack.POP() if not state.callstack.EMPTY() else nil
16: end while
17: return mapping
18: end function

Phase 2 (Line 11): activates Algorithm 3. This algorithm is responsible for building a new path or following an existing one in
the CFG. It may create or split nodes in this process, but it will never transition between CFGs. At the end, Algorithm 3,
sets the working node to the node which its tail is last instruction of the processed group.

Example 10. Each one of the six frames in Figure 8 is a snapshot of the state after each iteration of Algorithm 1. Snapshots are
taken immediately after the processing of the group by Algorithm 3 (Line 11).

Group 1: (Figure 8(a)) In phase 1, the CFG for function MAIN is created with its entry node set as the working node. In phase
2 this group is processed leading to the creation of the block with address @0x4004b0 with all the instructions of the
group. A new edge was created with execution count of 1 from the previous working node, i.e. entry node, to the current
working node, i.e. the newly created block.

Group 2: (Figure 8(b)) In phase 1, the pending call of the previous block is processed. The CFG for function TOTAL at
address@0x400492 is created and inserted into mapping. This CFG is added to the call map of the working node (block
@0x4004b0). Then, the state’s current pair is pushed onto the state’s callstack with the return address @0x4004cb —
the fall-through of the instruction call. Finally, there is a switch to the new CFG by setting the state’s current pair with
this CFG and its entry node. In phase 2, the second group is processed in a similar fashion as the previous. A block with
address@0x400492 is created, connected from the entry with execution count of one, and set as the new working node.

Group 3: (Figure 8(c)) In phase 1, the pending branch of the previous block is processed. The algorithm creates a phantom
node with address@0x4004ae for the target address of this branch. Note that no phantom node is created for this branch’s
fall-through address, since this path will be covered in phase 2 for this group. Thus, in phase 2 the block @0x4004a4 is
created, connected, and set as the working node.

Group 4: (Figure 8(d)) In phase 1, there is no action for the jump instruction of the previous block, since the jump target will
be handled by this group. In Phase 2, there is a jump to the instruction @0x4004a0 that is inside block @0x4004a0.
Therefore, this block must be split in two blocks: block @0x400492 with four instructions and block @0x4004a0 with
two instructions. Then, a new edge with one execution is created between blocks @0x4004a4 and @0x4004a0. All the
instructions of this group are matched against the ones in block @0x4004a0; thus no new information is added at this
point. Afterwards, this block becomes the working node.
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block
 

[group]
0x4004b0 [4]: sub $0x10,%rsp
0x4004b4 [8]: movl $0xa,0xc(%rsp)
0x4004bc [5]: lea 0xc(%rsp),%rdi
0x4004c1 [5]: mov $0x1,%esi
0x4004c6 [5]: callq 0x400492
[calls]
cfg: 0x400492

block
 

[group]
0x4004cb [4]: add $0x10,%rsp
0x4004cf [1]: retq

cf
g:

 0
x4

00
4b

0 
(m

ai
n)

1

1

1

block
 

[group]
0x4004a4 [2]: add (%rbx),%eax
0x4004a6 [4]: add $0x4,%rbx
0x4004aa [2]: inc %ecx
0x4004ac [2]: jmp 0x4004a0

block
 

[group]
0x400492 [1]: push %rbx
0x400493 [3]: mov %rdi,%rbx
0x400496 [5]: mov $0x0,%eax
0x40049b [5]: mov $0x0,%ecx

block
 

[group]
0x4004a0 [2]: cmp %esi,%ecx
0x4004a2 [2]: jge 0x4004ae

block
 

[group]
0x4004ae [1]: pop %rbx
0x4004af [1]: retq

cf
g:

 0
x4

00
49

2 
(t

ot
al

)

1

1

1
1

1

1

(a) (b)

main total

FIGURE 9 The resulting CFGs for functions MAIN (a) and TOTAL (b) in the mapping produced by Algorithm 1.
.

Group 5: (Figure 8(e)) In phase 1, the branch of instruction@0x4004a2 is processed again, but both paths it can follow have
already been covered; thus nothing is changed for this CFG. The execution followed the target of the branch, which lead
to this group. In phase 2, the leader of this group matches the address of the phantom node at @0x4004ae. Thus, the
phantom node is converted to a block node and it is populated with the instructions of this group and the update count of
the edge increased by one. Finally, this new block becomes the working node.

Group 6: (Figure 8(f)) In phase 1, a function return occurs, because the tail instruction of the working node is a return. First,
the working node is connected to the exit node with an edge count of one. Then, the algorithm checks if there is a return
address in the callstack that matches the address of the leader of this group. In this case, the leader address of this group
@0x4004cbmatches the top of the stack. Thus, the state’s current pair is restored by popping the top of the stack. At this
point, the current working node is block @0x4004b0, and the cfg the CFG of the MAIN function. In phase 2, the block
@0x4004cb is created, connected, and set as the working node.

After processing all the groups, Algorithm 1 connects the state’s working node to the halt node to conclude the execution
(Lines 13-16). Then, Algorithm 1 returns the mapping containing the functions MAIN and TOTAL that were invoked during the
execution of this program (Line 17). The final CFG for both functions can be seen in Figure 9.

Processing the Type of a Group’s Tail Instruction.
Algorithm 2, invoked at Line 9 of Algorithm 1, performs an action based on the type of the tail instruction of the previously
processed group. This tail instruction is obtained from the last instruction of the working node, which is always a basic block.
The function PROCESS_TYPE of Algorithm 2 receives a mapping of all CFGs discovered so far, the type of the tail instruction of
the previous group, and the target address (target_addr) of the leader instruction of the next group obtained from the machine.
This function returns the updated mapping, in case new control flow graphs are discovered. Note that this function may also
affect the global state.
According to Definition 2 the type of the tail instruction of a group must be either jump, branch, call, or return. If the type is

an unconditional jump, then no special action is required (Lines 2-3). In this case, only one program flow is possible in the CFG
and it will be handled when processing the next group. If the type is a conditional branch then Algorithm 2 models the possible
execution flows for this instruction (Lines 4-21). First, it builds a list of the possible target addresses: the branch’s target if it is
known— in case of a direct branch — , and the branch’s fall-through address (Lines 5-8). Then, for each target@addr (Line 9)
that is not the target_addr of the next block, Algorithm 2 either: (1) splits its block, if@addr is not in the first instruction (Lines
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Algorithm 2 Process the type of the tail instruction of a group.
global: state
input: mapping, type,@target_addr
output: mapping

1: function PROCESS_TYPE(mapping, type,@target_addr)
2: if type instanceof Jump then
3: # do nothing
4: else if type instanceof Branch then
5: addrs = [type.fallthrough]
6: if type.direct then
7: addrs.APPEND(type.target)
8: end if
9: for@addr in addrs do

10: if @addr ≠@target_addr then
11: node = state.current.cfg.FIND_NODE_WITH_ADDR(@addr)
12: if node then
13: if node instanceof Block and node.group.leader.addr ≠@addr then
14: node = state.current.cfg.SPLIT(node,@addr)
15: end if
16: else
17: node = state.current.cfg.ADD_NODE(Phantom(@addr))
18: end if
19: state.current.cfg.ADD_EDGE(state.current.working, node, 0)
20: end if
21: end for
22: else if type instanceof Call then
23: called = mapping.GET(@target_addr) if mapping.HAS(@target_addr) else mapping.PUT(@target_addr, CFG())
24: state.current.working.ADD_CALL(called, 1)
25: state.callstack.PUSH(state.current, type.fallthrough)
26: state.current = (called, called.entry)
27: else if type instanceof Return then
28: pops = state.callstack.POPS_COUNT(@target_addr)
29: while pops > 0 do
30: state.current.cfg.ADD_EDGE(state.current.working, state.current.cfg.exit, 1)
31: state.current = state.callstack.POP()
32: pops−−
33: end while
34: else
35: error "Unreachable code"
36: end if
37: return mapping
38: end function

12-15); or (2) creates a new phantom node, if @addr does not belong to a known block (Line 16-18). Regardless of the case,
the working node is connected to this new node without updating its execution count, since this path has not been traversed yet
(Line 19).

Example 11. Figure 8(c) shows that Algorithm 2 created the phantom node @0x4004ae. Said node corresponds to the target
of the branch jge at the end of group@0x400492 that was not taken.
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If the type is a call, then a different CFG will be visited (Line 22-26). First, the CFG is obtained either from the mapping if
it already exists, or a new instance is created otherwise (Line 23). Then, this CFG is added to the call list of the working node
(Line 24) with the execution count incremented by one. Later, Algorithm 2 pushes the current pair with the cfg and working
node onto the state’s callstack with the expected return address, at the fall-through of this call after it is completed (Line 25).
Finally, the state’s current pair is updated with the called cfg and its entry node (Line 26).

Example 12. Figure 8 shows the transition in the state for the CFGs that happens when the function main (Fig. 8(a)) makes
a call to another function total (Fig. 8(b)). At this point, the working node points to the entry node of function total —
situation prior to the Figure 8(b). Also, the called CFG is added to the call list of block @0x4004b0 of function main, as seen
in Figure 9(a).

If the type is a return, then Algorithm 2 restores the state’s current pair if the target address matches the return address of an
entry in the call stack (Lines 27-33). First, the Algorithm 2 calls the CFG auxiliary function POPS_COUNT to scan the state’s
callstack, from top to bottom, searching for an entry whose @ret_addr is the same as the @target_addr. It returns how many
pops, or hops, are necessary to find the matching entry. Then, while the pop count is positive (Line 29), Algorithm 2 adds an
edge from working to exit, or increments that edge’s counter by one (Line 30). The state’s current pair is restored with a pop in
the call stack (Line 31). Also, the pop count is decremented by one (Line 32). If there is no entry matching the target address with
the return address in the call stack, the return is treated as an unconditional jump. In this case, no further action is performed.

Example 13. Figure 8(e) shows the moment before the return at block @0x4004ae is processed by Algorithm 2. The target
address@0x4004cbmatches the top of the call stack, hence a pop is required. The working node of Figure 8(e) is connected to
the exit node as can be seen in Figure 9(b). Then, the current pair is restored to the CFG of MAIN function as in Figure 8(f), but
with working node at@0x4004b0 and before the creation of block@0x4004eb.

Algorithm 2 ensures that variable type can only be one of: jump, branch, call, or return according to Definition 2. Any other
type results in an error (Lines 34-35). In the end, Algorithm 2 returns the mapping, which might have been updated.

Processing Groups of Instructions.
Algorithm 3 processes each instruction in a group in the order defined by their addresses. When processing instructions,
Algorithm 3 either builds a new path in the current CFG, follows an existing path, or does a combination of both. While the same
group might pertain to different CFGs8, a CFG cannot contain only part of a group. Therefore, the only part of the state that mat-
ters to Algorithm 3 is the current pair — the cfg and the working node. Algorithm 3 is parameterized by these two arguments,
plus the group to be processed. The algorithm follows the instructions of the group, updating the working node in the process. It
returns a block that has the tail instruction of the group, which Algorithm 1 uses to update the working node (Alg. 1-Line 15).
Algorithm 3 processes instructions individually (Line 3). There is an auxiliary variable curr_instr to ensure that the first

instruction of the group belongs to the successor of the working node (Line 2). When curr_instr is defined, Algorithm 3 takes
no action (Lines 4-5). In this case, the instr already exists in the basic block of the working node. When curr_instr is NIL, there
is a switch from one basic block to another. Such event happens in several scenarios, each one implying different actions:

1. The program flow is moving onto a phantom node. Algorithm 3 “resurrects" it, that is to say, turns this phantom node
into a basic block (Lines 9-11). A new edge is created between the working node and the revived block with the execution
count increased by one (Line 16). The new block becomes the current working node (Line 17).

2. The program flow is moving onto the middle of a sequence of instructions previously thought to be a single basic block.
Algorithm 3 splits this block (Lines 12-13). Then, the same steps of the previous case happens to connect the working
node to this block and make it the new working node (Lines 16-17).

3. The program flow is visiting an instruction that should belong to the working node. Algorithm 3 appends the new instruc-
tion to the working node (Lines 20-23), if: (1) the instruction is not be the leader of the group — group leaders must
always be the first instruction of a block; (2) the working node has no calls nor signal handlers to other functions, and
neither does it have successors nodes.

4. The program flow is visiting a block leader for the first time. Algorithm 3 creates a new node to represent this block of
instructions, and sets the working pointer to it (Lines 25-28).
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Algorithm 3 Process group by handling each instruction individually.
input: cfg, working, group
output: working

1: function PROCESS_GROUP(cfg, working, group)
2: curr_instr = nil
3: for instr in group.INSTRS() do
4: if curr_instr then
5: assert curr_instr == instr
6: else
7: node = cfg.FIND_NODE_WITH_ADDR(instr.addr)
8: if node then
9: if node instanceof Phantom then
10: node = cfg.FIND_NODE_WITH_ADDR(instr.addr)
11: node = cfg.PHANTOM2BLOCK(node, Block(Group(instr)))
12: else if node.group.leader ≠ instr then
13: node = cfg.SPLIT(node, instr.addr)
14: end if
15: assert node.group.leader == instr
16: cfg.ADD_EDGE(working, node, 1)
17: working = node
18: else
19: if (instr ≠ group.leader) and (working instanceof Block) and (not working.calls.EMPTY()) and
20: (not working.signals.EMPTY()) and (not cfg.SUCCS(working).EMPTY()) then
21: assert (working.group.tail.addr + working.group.tail.size) == instr.addr
22: working.group.ADD_INSTR(instr)
23: else
24: node = cfg.ADD_NODE(Block(Group(instr)))
25: cfg.ADD_EDGE(working, node, 1)
26: working = node
27: end if
28: end if
29: end if
30: curr_instr = working.group.NEXT(instr)
31: end for
32: return working
33: end function

When there is a mismatch between an instruction of the group (instr) with the tracker pointer (curr_instr), Algorithm 3 takes
one of two possible actions. (1) a block must be created (event 4) or modified (events 1 and 2) which guarantees instr is the
leader. Edges may be added to connect the previous working block with this new block. (2) instr must be the tail of the working
block (event 3).

Example 14. Figure 8(e) shows that the phantom node @0x400492 in Figure 8(d) was replaced with an actual basic block.
This happens during the processing of Group 5 in Figure 8, when the branch jge is visited. Figure 8(d) shows the splitting
of block @0x400492 into two new blocks: @0x400492 now with four instructions and @0x4004a0 with the remaining two
instructions. This happens during the processing of Group 4 in Figure 8, because of the jump to@0x4004a0.
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4.3 Extensions to the Basic Algorithm
The core algorithms described in Section 4.2 support extensions for performance and precision. Regarding efficiency,
Algorithm 1 admits a caching strategy to avoid unnecessary recomputations. Regarding precision, the algorithm supports multi-
threaded programs and signal handlers. These extensions are key for CFGGRIND to provide the functionalities described in
Section 3.

Caching Strategy.
By Definition 2, once the program flow reaches the leading instruction of a group g, every instruction within g will be executed.
As a consequence of this observation, it is not necessary to invoke Algorithm 3 on groups that have already been visited in the
same context. In other words, the outcome of function PROCESS_GROUP (Alg. 3), invoked at Line 11 of Algorithm 1, is always
the same for a given triple (cfg, working, group). Therefore, as an optimization, the algorithm associates a cache in each node of
the cfg. When a pair formed by a working node and a group is processed for the first time, the algorithm caches the next working
node. This cache is a tableworkingsrc × group → (workingdst, count). The execution count is updated in case of cache hits, and
flushed in case of cache misses. This optimization is implemented by Algorithm 4, which augments Algorithm 1 with a cache.

Algorithm 4 Algorithm 1 update to use a caching strategy to avoid recomputation of function PROCESS_GROUP.
global: state
input: machine, mapping
output: mapping

1: function PROCESS_PROGRAM(machine, mapping)
2: for group in machine.RUN() do
3: addr = group.leader.addr

...
11: idx = addr mod CACHE_SIZE
12: (cached_group, cached_working, cached_count) = state.current.working.cache[idx]
13: if cached_group == group then
14: state.current.working.cache[idx] = (cached_group, cached_working, cached_count + 1)
15: state.current.working = cached_working
16: else
17: if cached_count > 0 then
18: state.current.cfg.FLUSH_COUNTS(state.current.working, cached_group, cached_working, cached_count)
19: end if
20: prev_working = state.current.working
21: state.current.working = PROCESS_GROUP(state.current.cfg, state.current.working, group)
22: prev_working.cache[idx] = (group, state.current.working, 0)
23: end if
24: end for

...
29: for (addr, cfg) in mapping do
30: for src in cfg.NODES() do
31: for (group, dst, count) in src.cache do
32: if count > 0 then
33: cfg.FLUSH_COUNTS(src, group, dst, count)
34: end if
35: end for
36: end for
37: end for
38: return mapping
39: end function
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Example 15. The cache avoids work due to repeated loop iterations. The loop in Figure 6(a) iterates once, because its input is a
single-element array. However, running this program with a longer array, only the first loop iteration would change the structure
of the CFG. The other iterations would just update the execution counters. In this case, the working pointers would be moving
between the loop condition (block@0x4004a0) and loop body (block@0x4004a4) without generating new information, except
updating its execution count.

The cache avoids the O(i) cost of Algorithm 3, where i is the number of instruction in the group, upon cache hits. The
performance evaluation in Section 5 indicates that such situations abound. To support this optimization, the CFG is augmented
with the following operation:

• flush_counts(src, group, dst, count): flush execution counts of group for count times by following the edges starting from
src node until it reaches the dst node.

Every entry and block node has a cache with n triples like (group, working, count). Entries are indexed by the leader address
of the group (Alg. 4, Lines 11). The cache size n is configurable at compile-time. The working node is updated without invoking
Algorithm 3 if the current group plus itsworking node gives us a cache hit (Lines 13-15). The cache is updated; hence, increasing
by one its execution count.
If we have a cache miss, then a number of actions must be taken, before a new entry is added to the cache. In particular,

Algorithm 4 needs to update counters associated with paths stored in the cache. This “flush" is necessary because the cache
avoids processing instructions, including updating edge counters. Flushing happens at Lines 17-19 of Algorithm 4. After flushing
the cache, Algorithm 4 processes the new group and updates the cache (Lines 20-22). The first entry of a group in the cache is
associated with a counter of zero (Line 22), because this first information is recorded directly in the current CFG’s edges when
PROCESS_GROUP is invoked at Line 21 of Algorithm 4.

Support to Multi-Threaded Programs
The prototype of CFGGRIND, implemented in VALGRIND, has support for multi-threaded programs. VALGRIND natively serial-
izes the execution of such programs into a single-threaded application by implementing its own scheduling policy. CFGGRIND
leverages this feature by maintaining a state per thread of execution. In Algorithm 5, the state is the same global variable used
by Algorithms 1-3. The global variable current_thread keeps all the information regarding the execution of the active thread,
including its ID. The global map thread_states holds the states for all the threads indexed by the thread IDs. Initially, each
thread state is initialized with an empty state (NIL, []), similarly to how the global state is configured prior to program execution
(Sec. 4.1). A context switch occurs as an event external to the process that runs Algorithms 1-3. Thus, this operation is of no
consequence to the inner workings of these algorithms.

Algorithm 5 Context switch from the current_thread to another next_thread.
global: state, current_thread, thread_states
input: next_thread

1: procedure SWITCH_CONTEXT(next_thread)
2: assert current_thread ≠ next_thread
3: thread_states[current_thread.id] = state
4: state = thread_states[next_thread.id]
5: current_thread = next_thread
6: end procedure

In a context switch from the active thread (current_thread) to a different thread (next_thread), Alg. 5 saves the state of cur-
rent_thread in themap thread_states, indexing it by current_thread’s ID (Line 3). Then, the previously saved state of next_thread
is restored to the global state (Line 4). Finally, Alg. 5 updates variable current_thread to refer to next_thread (Line 5).

Handling Signal Events.
The prototype of CFGGRIND has the ability to precisely track signal events. CFGGRIND relies on VALGRIND’s capabilities to
identify when an event is raised by the machine and when this event is properly handled by the program. To support signal
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events, CFGGRIND employs a strategy similar to the one employed for multi-threaded programs: it manipulates the global state
externally. Algorithm 6 is responsible to prepare the state when a signal event is raised, whereas Algorithm 7 is responsible to
recover the state once the signal was handled by the program. Both Algorithms 6 and 7 hold a global variable for the active
thread (current_thread), and a global map of state’s queue indexed by thread IDs (signal_states). Signals occur in the scope of a
thread; thus each thread must have its own signal handlers. A queue is required to hold the thread state in case multiple signals
are raised simultaneously — they must be treated separately and in sequence.

Algorithm 6 Process a raised signal event.
global: state, current_thread, signal_states
input: mapping, sigid,@target_addr

1: procedure ENTER_SIGNAL(mapping, sigid,@target_addr)
2: called = mapping.GET(@target_addr) if mapping.HAS(@target_addr) else mapping.PUT(@target_addr, CFG())
3: assert state.current.working instanceof Block
4: state.current.working.ADD_SIGNAL(sigid, called, 1)
5: signal_states[current_thread.id].ENQUEUE(state)
6: state = (nil, [])
7: end procedure

In Algorithm 6, ENTER_SIGNAL receives the map of CFGs (mapping), the ID of the signal raised (sigid), and the address of
the first instruction to be executed afterwards (@target_addr). This address is the entry point of a function that will be called
to handle the signal. Algorithm 6 obtains the called CFG for the signal handler based on @target_addr (Line 2). Then, it adds
this CFG to the list of signal handlers associated with the working node with an execution count of one (Lines 3-4). Notice that
this working node must be of the block type. Later, the current state is pushed onto the signal_states queue for the active thread
(Line 5). Finally, the state is initialized as empty to proceed with the execution of Algorithms 1-3.

Algorithm 7 Process a handled signal event.
global: state, current_thread, signal_states

1: procedure LEAVE_SIGNAL( )
2: while state.current do
3: state.current.cfg.ADD_EDGE(state.current.working, state.current.cfg.exit, 1)
4: state.current = state.callstack.POP() if state.callstack else nil
5: end while
6: assert not signal_states[current_thread.id].EMPTY()
7: state = signal_states[current_thread.id].DEQUEUE()
8: end procedure

When leaving a signal handler, Algorithm 7 connects the working node of the current state and all the working nodes in its
callstack if present, to the exit node with execution count of one (Line 2-6). This step is similar to the one present in Algorithm 1,
Lines 13-16: it is used to ensure consistency of CFGs. Then, the state is restored by popping the signal_states queue for the
current_thread.

5 EVALUATION

The techniques introduced in this paper are integrated into a tool, CFGGRIND, which is publicly available at https://github.com/
rimsa/CFGgrind. Although a research artifact, CFGGRIND’s implementation is sufficiently solid to enable the exploration of
several research questions:

https://github.com/rimsa/CFGgrind
https://github.com/rimsa/CFGgrind
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RQ1 How efficient is CFGGRIND, when compared with tools with similar purpose?

RQ2 What is the impact of the cache (Algorithm 4) on the performance of CFGGRIND?

RQ3 What is the ratio between complete and incomplete CFGs in large programs?

RQ4 What is the impact of different input sets in the incremental refinement of CFGs?

RQ5 How much information does CFGGRIND add onto a static CFG reconstructor?

RQ6 What is the time complexity of CFGGRIND in practice?

Benchmarks. This evaluation of CFGGRIND uses two benchmarks, CBENCH (http://ctuning.org/) and SPEC CPU2017 (https:
//www.spec.org/). CBENCH contains 32 C programs. Each program has 20 available input sets, except bzip2d and bzip2e with
32 inputs each. The CBENCH programs were modified to compile and run in a 64-bit architecture. SPEC CPU2017 contains 43
programs, written in C, C++ and Fortran. They are organized in 4 categories: integer and floating point, separated into single-
and multi-thread versions. Multi-thread programs were configured to execute as single-thread, since VALGRIND serializes the
execution. Thus, executing the programswith a single thread in one core for the experiments is sufficient because the performance
of CFGGRIND is not affected by the number of threads in an execution (Sec. 3.4). All programs in CBENCH and SPEC CPU2017
are compiled with GCC at the -O2 optimization level. In the comparison with DYNINST (RQ5 in Section 5.5), the code was
stripped from debugging symbols.
Runtime Setup. The current version of CFGGRIND has been implemented in VALGRIND version 3.15.0. Results reported for
CBENCH were produced on a 16-core Intel(R) Xeon(R) E5-2630 at 2.40GHz with 16GB of RAM running CentOS 7.5. For
SPEC CPU2017, the results were obtained on an 8-core Intel(R) Core(TM) i7-4790 at 3.60GHz with 16GB of RAM running
CentOS 7.6. We use two machines to run the experiments in parallel.
Measurement Methodology. Performance numbers for CBENCH are the average of three executions for each program. On
average, a run on the entire CBENCH is completed in ∼22.5h. The difference between the fastest and slowest of the three runs
is less than one minute. Due to this small difference — one minute in 22.5 hours, we shall not report standard deviations in our
results. Performance numbers for SPEC CPU2017 were measured only once because of the long run times. Executing a single
set of experiments for intrate takes ∼30.1h, fprate ∼35.5h, intspeed ∼40.6h, and fpspeed ∼295.6h. The experimental
evaluation used all the inputs available in both benchmarks for the simulations. To answer RQ1 5.1 and RQ2 5.2, the average
is computed using the geometric mean. The variance between each program run times is high: the fastest program in CBENCH
executes in ∼2s, while the slowest in ∼20s; in SPEC CPU2017 the fastest runs in ∼4m, while the slowest in ∼57m. To answer
RQ3 5.3, the average is computed using the arithmetic mean. The total number of complete, incomplete, and unreached CFGs
is divided by the total number of CFGs in the benchmark suite.

5.1 RQ1: Efficiency
Dynamically reconstructing CFGs with CFGGRIND during the execution of a program results in significant overhead. For
instance, the execution of the 32 programs of CBENCHwith CFGGRIND is∼19 times slower than an equivalent non-instrumented
baseline execution. For the 43 programs in SPEC CPU2017, CFGGRIND has a slowdown of ∼29 times. This runtime cost is on
par with other tools built on top of VALGRIND, whose manual we quote below29:

‘The amount of instrumentation code added varies widely between tools. At one end of the scale, Memcheck
adds code to check every memory access and every value computed, making it run 10-50 times slower than natively.
At the other end of the spectrum, the minimal tool, called Nulgrind, adds no instrumentation at all and causes in
total “only" about a 4 times slowdown.’

The empirical results in this Section evidence that the instrumentation overhead is also high for other tools that reconstruct
CFGs. Figure 10 presents, in logarithmic scale, a comparison of the slowdown for three different tools that reconstruct CFGs:
CFGGRIND, BFTRACE 14 and DCFG 13. The baseline for these comparisons is the original program. Figure 10 also shows the
slowdown caused by CALLGRIND, a VALGRIND tool that builds the call graph of a program. Results for the 32 programs available
in CBENCH are reported; however, we omit for SPEC CPU2017 because DCFG takes a prohibitively long time to process the
larger SPEC CPU2017 suite.

http://ctuning.org/
https://www.spec.org/
https://www.spec.org/
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FIGURE 10 Slowdown of different tools that reconstruct CFGs relative to the original program execution without instrumen-
tation for CBENCH.

The CFG-reconstruction tools compared in Fig. 10 are not equivalent (see Section 3). CALLGRIND is not a CFG reconstructor,
but it is included in the comparison because it runs on VALGRIND, like CFGGRIND does. Hence, CALLGRIND serves as a perfor-
mance baseline for readers that are familiar with the VALGRIND’s ecosystem. The other three tools in Fig. 10 reconstruct CFGs.
However, their outputs, although similar, are not directly comparable because each tool uses its own program representation.
For instance, DCFG produces a single CFG for the entire program; CFGGRIND and BFTRACE, in turn, splits it per function.
Figure 10 indicates that CFGGRIND and BFTRACE are much faster than DCFG. DCFG, built onto PINPLAY, saves program

state for posterior re-execution — an overhead absent on the other tools. On average, DCFG is ∼7x slower than CFGGRIND.
CFGGRIND runs faster than BFTRACE, although by a lower margin: ∼28%. CFGGRIND is also faster than CALLGRIND: ∼9%.
Figure 10 also shows the runtime for the original programs. Binaries analyzed by CFGGRIND experiment a slowdown of ∼19x
when compared to the original programs — viz., without any emulation. To put these numbers in perspective, DCFG causes a
slowdown of ∼136x and BFTRACE, ∼24x. VALGRIND, without any tool, slows CBENCH down by ∼3.6x on average; however,
for the sake of readability, we omit this result from Figure 10.
Figure 11 compares the runtime of CFGGRIND for the SPEC CPU2017 suite against the non-instrumented baseline pro-

gram and other VALGRIND builtin tools. These results indicate that CFGGRIND has a performance on par with CALLGRIND —
CFGGRIND is actually∼7% faster than CALLGRIND. Even though CFGGRIND has a slowdown of∼29x in relation to the original
program, it is only ∼4.5x slower than running VALGRIND without any tool (NULGRIND). Notice that CFGGRIND delivers sub-
stantial more information than CALLGRIND. CFGGRIND’s CFGs encapsulates the call graph of programs, in addition to all the
instructions and paths traversed during the program flow. CFGGRIND is as suitable as other tools in the VALGRIND ecosystem
for practical use.

5.2 RQ2: The Impact of the Cache
The cache implemented by Algorithm 4 is key to boost CFGGRIND’s performance. As explained in Section 4, the caching
strategy avoids the re-execution of Algorithm 3 for a previously visited pair (working, group). A cache hit enables the algorithm
tomove directly to the nextworking nodewithout processing all the instructions of the group. In CFGGRIND, the size of the cache
is configurable at compilation time: for each working node there are n entries indexed by different group addresses. However,
increasing n past a certain value results in diminishing returns. Figure 12 illustrates this trend on the training set for the intrate
part of the SPEC CPU2017 suite.
Figure 12 makes it clear that the cache is important: the average performance improvement from the introduction of a cache

with n = 2 is∼1.6 times. This benefit is substantial in loop-intensive programs, such as xz. Setting n > 2 produces mixed results
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FIGURE 11 Slowdown of builtin tools in VALGRINDand CFGGRIND relative to the original program execution without
instrumentation for SPEC CPU2017.
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FIGURE 12 The impact of cache size on the runtime of CFGGRIND.

because most of the basic blocks in a program have only one or two successors. Exceptions to this rule are due to indirect jumps,
such as those used to implement switch statements. Thus, although the last column of Figure 12 tends to report increasingly
better results, improvements past n = 8 are too small to be of practical consequence. Larger cache sizes might even provoke
slowdowns due to heavier memory usage. Based on these results, the experiment performed to answer RQ1 (Sec. 5.1) used a
fixed cache size of n = 8, which provides a good balance between efficiency and memory requirements.

5.3 RQ3: CFG Completeness
When used to support software testing, CFGGRIND accurately recovers the portions of code traversed by test inputs, with exact
profiling information (as explained in Section 3). And, contrary to classic approaches30,31, it also recovers the CFG of library
code. Program coverage through dynamic reconstruction of CFGs can be estimated by answering the following question: “how
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many functions had all their instructions executed at least once by a particular input?". These functions are called complete, as
stated in Definition 4. This section provides an answer to this research question.

Determining Functions of Interest.
Even though CFGGRIND can track the execution of dynamically shared libraries, this study of completeness considers only
functions available in the source code of each benchmark. This restriction enables the computation of a ratio of completeness
because the total number of functions that can be invoked is available when the source code is accessible. The .text section of
binary files, compiled with debugging symbols, is used to identify source-code functions. SPEC CPU2017 has 172,268 functions
scattered across 43 programs; CBENCH has 7,250 functions in 32 programs.

Invocation Ratio.
The invocation ratio of a set of inputs for a benchmark suite is the number of functions that are invoked over the total number
of functions in the programs in the benchmark suite. For the SPEC CPU2017, with all the reference inputs, the invocation rate
is ∼25%, while for CBENCH, with 20 inputs, the invocation rate is ∼38%.

Completeness Ratio.
Figures 13-14 show, in logarithmic scale, the number of complete, incomplete, and unreached CFGs for SPEC CPU2017 and
CBENCH, respectively. Both were executed with the benchmark’s reference inputs. The data collection for both figures, from
a single run of the entire suite, required 402 hours (almost ∼17 days) for SPEC CPU2017 and 22.5 hours for CBENCH. The
completeness ratio for a benchmark suite with a given workload is the number of functions for which the entire CFG was
discovered divided by the number of functions that were invoked with that workload. For the SPEC CPU2017 suite with the
reference inputs, the completeness ratio is ∼40%, and for the CBENCH suite the completeness ratio is ∼37%.
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FIGURE 13 Number of complete/incomplete/unreached flow graphs for each of the 43 programs in SPEC CPU2017.

Figure 15 shows the correlation between completeness ratio and (a) number of blocks, or (b) number of instructions per
CFG. To improve readability, the graph shows results only for CFGs with up to 100 blocks (a) and up to 1,000 instructions
(b). For example, SPEC CPU2017 has 392 CFGs that contain exactly 20 block nodes. Out of those, 50 are complete and 342
are incomplete. The same is true for instructions: out of the 15 CFGs of SPEC CPU2017 with exactly 200 instructions, 4 are
complete and 11 are not. Most of the CFGs in programs in the SPEC CPU2017 suite are small; hence, the negative slopes in
Figure 15(a-b). A similar behaviour is observed in CBENCH, although not shown in this manuscript. This decreasing rate is
much more accentuated for complete CFGs. This trend indicates that, as expected, the probability of finding complete CFGs
decreases as the size of the CFG increases.
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FIGURE 14 Number of complete/incomplete/unreached flow graphs for each of the 32 programs in CBENCH.
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FIGURE 15 Relation between the number of complete/incomplete CFGs (y-axis, ln scale) per number of blocks (a) and
instructions (b) for the SPEC CPU2017 benchmark. X-axis shows number of blocks (a) and instructions (b).

5.4 RQ4: Incremental Construction of CFGs
Multiple invocations of the same function during a single run of a program might lead to more complete CFGs when new paths
are explored. To capitalize on this observation, the results produced by a run of CFGGRIND can be forwarded as input to another
run. If the new execution flows into unexplored program areas, this information will be added to the CFGs produced. Entire
CFGs can be included when new functions are called, and existing CFGs can be expanded when phantom nodes or unmapped
areas are visited. The more inputs are given to CFGGRIND, the more complete the reconstruction of the program’s control flow.
Note that neither BFTRACE nor DCFG support incremental construction of CFGs, as discussed in Section 3.3.
Figure 16 shows how extra inputs contribute to augment the number of visited instructions in CBENCH. This benchmark is

well suited for this experiment because each program comes with 20 data sets, except for bzip2d and bzip2e that comes with
32 inputs each. In this case, the 32 inputs were evenly distributed as 20 inputs in Figure 16. Each tick in the X-axis of Figure 16
shows the number of instructions observed up to the ntℎ execution of a program (1 ≤ n ≤ 20). Following the methodology
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FIGURE 16 Evolution of instruction coverage (y-axis) due to incremental execution of inputs for CBENCH.

used in Section 5.3, library functions are excluded from this analysis. Considering all 32 CBENCH programs, the 19 extra inputs
augment the number of instructions visited from 127,016 to 163,750— an increase of∼29%. The largest growths were observed
in bzip2d, 19 new CFGs were added of the 81 available CFGs for the entire program (∼23%), and office_ghostscript, 312
new CFGs added onto 3,488 (∼9%). Comparing the first and last executions of all the programs reveals that CFGGRIND was
able to identify 378 new CFGs — a growth of 5.21% over a universe of 7,250 CFGs available in the text section of CBENCH.
Applying the same principles for instructions, 36,736 new unique instructions were executed— a growth of 6.01% upon 601,345
instructions in CBENCH. This experiment indicates that, at least for CBENCH, extra inputs have a mild effect on code coverage:
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they provide new information about the program execution. Although a great extent of each program was already observed in
the first execution.

5.5 RQ5: Combining Static and Dynamic CFG Reconstruction
DYNINST, a state-of-the-art static CFG reconstructor8, can be used to extend CFGGRIND’s coverage, and vice-versa. This section
uses these two tools in tandem to analyze CBENCH and SPEC CPU2017. For this experiment, we have compiled the benchmarks
without debugging information — the typical way in which production code is distributed. Table 2 shows the result of this
comparison for CBENCH. The invocation ratio of CFGGRIND is ∼38%; hence, it identifies 2,738 out of 7,250 possible CFGs.
The invocation ratio of DYNINST is 42%; hence, it finds 3,049 CFGs. The two techniques found 1,633 common CFGs, i.e.,∼23%
of the total. Similarly, Table 3 shows results for SPEC CPU2017. The invocation ratio of CFGGRIND is ∼25%. This percentage
means that it identifies 43,485 out of 172,268 CFGs. The invocation ratio of DYNINST is ∼39%; hence, it finds 66,552 of the
CFGs. The two techniques found 30,825 common CFGs in SPEC CPU2017, i.e., ∼18% of the total.

CFGGRIND (A) DYNINST (B) A ∩ B A ⧵ B B ⧵ A
CFGs 2,738 3,049 1,633 (59.6%/53.6%) 1,105 (40.4%) 1,416 (46.4%)
Basic blocks 33,316 76,456 23,608 (70.9%/30.9%) 9,708 (29.1%) 52,848 (69.1%)
Edges 52,980 111,732 37,345 (70.5%/33.4%) 15,635 (29.5%) 74,387 (66.6%)
Instructions 163,752 332,189 124,338 (75.9%/37.4%) 39,414 (24.1%) 207,851 (62.6%)
Calls 7,596 18,728 4,120 (54.2%/22.0%) 3,476 (45.8%) 14,608 (78.0%)

TABLE 2 Comparison between CFGGRIND and DYNINST for CBENCH. In the column between the intersection of CFGGRIND
and DYNINST, the percentage is given in relation to CFGGRIND and DYNINST, respectively.

CFGGRIND (A) DYNINST (B) A ∩ B A ⧵ B B ⧵ A
CFGs 43,485 66,552 30,825 (70.9%/46.3%) 12,660 (29.1%) 35,727 (53.7%)
Basic blocks 939,568 3,466,454 714,309 (76.0%/20.6%) 225,259 (24.0%) 2,752,145 (79.4%)
Edges 1,429,277 5,098,624 1,096,006 (76.7%/21.5%) 333,271 (23.3%) 4,002,618 (78.5%)
Instructions 4,968,718 17,712,186 4,161,470 (83.8%/23.5%) 807,248 (16.2%) 13,550,716 (76.5%)
Calls 302,929 3,160,257 198,561 (65.5%/06.3%) 104,368 (34.5%) 2,961,696 (93.7%)

TABLE 3 Similar to Table 2, but for SPEC CPU2017.

Binaries without debugging information hurt static analyses, whereas dynamic analyses require good program inputs to be
effective. Combining these two techniques can improve code coverage.
The combined analyses find 4,154 CFGs for CBENCH — an invocation rate of ∼57%. CFGGRIND finds 1,105 new CFGs that

DYNINST was unable to recover statically. In other words, CFGGRIND adds ∼15% more CFGs onto the collection observed by
DYNINST. Similarly, the combined analysis for SPEC CPU2017 yields 79,212 CFGs — an invocation rate of ∼46%. Of those,
12,660 (∼7%) were previously unknown to DYNINST. The remaining metrics in Tables 2-3, e.g., blocks, edges, instructions and
calls, collide in ways that are hard to quantify. For instance, DYNINST identifies instructions that are never executed, such as
those used for padding. Some CFG edges mark impossible paths— they arise due to conservative estimates of indirect branches,
for instance. Also, a basic block in one analysis can intersect partially with one or more basic blocks in other analysis. Thus,
because there is no one-to-one correspondence between these four metrics in both analyses, the numbers presented must be
understood as approximate results.
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5.6 RQ6: Empirical Estimate of Asymptotic Complexity
The reconstruction of CFGs increases the complexity of program execution because of accesses to the cache discussed in
Section 4.3. The cache is implemented as a hash-table. In the absence of collisions, the next working node is retrieved in con-
stant time, i.e., with an overhead for this access of O(1). However, collisions might happen. The current implementation of
CFGGRINDminimizes collisions via a simple expedient. If occupation of the hash-table reaches 80% of its size, then a new table,
twice as large is allocated, and data is copied from the old cache to the new one. If collisions happen, then CFGGRIND uses a
list to store multiple entries. We have opted for a list, instead of a balanced tree, for two reasons. First, the list has lower startup
cost; hence, it outperforms the balanced trees for small number of elements. Second, the resize-and-copy procedure tends to
reduce the number of collisions; thus, in practice, it is unlikely that CFGGRIND’s cache will contain a large number of entries
with the same hash code. The other components of the algorithms discussed in Section 4.2 contribute only a constant factor to
the processing of each instruction. The algorithms follow instructions in the order in which they are executed. The loop in Lines
2-12 of Algorithm 1 processes each group in order, while the loop in Lines 3-31 of Algorithm 3 processes each instructions of
the groups sequentially. Algorithm 2 processes the tail instruction of the group, and run in O(1) for jumps, calls and returns.
For branches, the algorithm needs to find a successor in a list, but since most blocks have a small number of successors, the
search cost is low. Furthermore, operations that add a node or an edge, or replace a phantom node with a block node run inO(1).
The operation to find the node with a specific address, or the exact program point where to split a node requires a search in a
hash-table; but this operation tends to run in constant time due to lower collisions. Therefore, in practice it is still possible to
reconstruct the CFG of programs with a constant time per instruction; or, in other words, with a linear cost in terms of number
of executed instructions. Figure 17 supports this observation with empirical data.
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FIGURE 17 Relation between execution time of non-instrumented programs with NULGRIND (emulation only) and programs
instrumented with CFGGRIND, for CBENCH and SPEC CPU2017 (a); Relation between the number instructions observed during
the execution of CBENCH and SPEC CPU2017 programs, and the running time of these programs, when instrumented with
CFGGRIND (b).

Figure 17(a) correlates the running time of programs executed with NULGRIND and the running time of programs instru-
mented with CFGGRIND. NULGRIND runs VALGRIND on the target program without instrumentation, as a emulation only tool.
Visual inspection of the figure indicates strong linear correlation. Indeed, the coefficient of determination between these two
running times is 0.905: very strong evidence of linear behavior. The linear relation between the number of instructions that are
fetched during program execution, and the running time of CFGGRIND is even stronger. Figure 17(b) supports this statement by
presenting such relation for CBENCH and SPEC CPU2017 programs. In this case, the coefficient of determination is 0.990: very
close to 1.0, which would be a perfect linear relation.
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6 RELATEDWORK

Related research includes the reconstruction of CFGs for the analysis of binary programs; two alternative approaches for dynamic
reconstruction of CFGs; the reconstruction of CFGs in dynamic program slicing, which is typically done through program
instrumentation; and several approaches for the static reconstruction of CFGs. This section reviews these related topics.

Dynamic Reconstruction of CFGs.
Dynamic analyses of binary programs have been used to detect malware32, to improve test coverage33, to de-obfuscate pro-
grams34, to locate out-of-bounds memory accesses35, and to detect memory dependences14. All these uses of dynamic analysis
of binaries had to reconstruct the CFG in order to perform the analysis. However, the description of these analyses do not
detail the method used to reconstruct the CFG. Therefore, it is difficult to discern the advantages and shortcomings of the CFG
reconstruction in each of them. Moreover, none of them provide a publicly available artifact that would allow for an evalua-
tion or comparison with the approach described in this paper. To the best of our knowledge, only three tools focus on dynamic
CFG reconstruction: FXE by Xu et al.15, BFTRACE by Gruber et al.14 and PINPLAY by Yount et al.13. In this paper, we have
experimented with the last two of them.
PINPLAY and BFTRACE are the only implementations of dynamic CFG reconstruction that are available for public scrutiny.

The experimental results presented in Section 5 indicate that the techniques described in this paper improve on both tools, in
terms of efficiency and completeness. Indeed, many of the design decisions in the development of CFGGRIND were motivated
by the possibility to use it to augment the precision of DYNINST, a static CFG reconstructor. Integration with static analyzers
is not a driving force behind neither PINPLAY’s implementation nor BFTRACE’s; hence, such possibility is not discussed in the
papers that introduce those tools.
FXE combines static and dynamic analysis15. Like BFTRACE, FXE interprets a program using QEMU, whereas PINPLAY uses

PIN, and CFGGRIND uses VALGRIND. However, instead of simply interpreting each instruction with the state produced by the
normal execution of the program, FXE tries to force the execution of each branch that it finds while building the program’s CFG;
hence, a CFG produced by FXE does not correspond to a dynamic slice of a program’s execution. In other words, upon finding
a phantom node, FXE saves the current state at that program point, and marks it as active. While there are active branches, FXE
backtracks, and re-evaluates the branch condition, forcing the visit of the phantom block. Although elegant, this approach has a
much higher runtime complexity. Therefore, to keep reconstruction practical, FXE foregoes the analysis of library code, which
is a serious limitation for its practical use. According to Xu et al.15:

“When FXE detects a function call pointing to external code, it forces the execution to immediately return to
the call site and continue along the fall-through."15

Dynamic Program Slicing.
Much of the literature on the dynamic reconstruction of CFGs was influenced by the notion of Dynamic Program Slicing. This
concept was introduced by Korel and Laski20. Yet, the formulation of Agrawal and Horgan36, introduced five years later, seems
to be the most standard today. If P is a program, I ∈ P is an instruction of P and � is an input of P , then the dynamic slice S
is a subset of P ’s instructions that, when executed, always causes the interpretation of I as in P . Dynamic program slicing has
been the focus of much research, and remains a trendy topic even today37,38.
A survey of the literature on Dynamic Slicing reveals that most work on the area relies on code instrumentation. In contrast,

CFGGRIND, PINPLAYand BFTRACE rely on program emulation. Code instrumentation has a key advantage: it simplifies the
task of linking runtime events with source code. On the other hand, it has a major disadvantage: it requires the availability of
the source code; hence, it is unable to handle library code.

Static Reconstruction of CFGs.
Most papers about the analysis of binary code deal with the static reconstruction of control flow graphs. Seminal work on binary
code analysis, such as Cifuentes’3, Gao’s39 and Balakrishnan’s40, used static reconstruction of CFG. More recent techniques to
reconstruct CFGs also use static reconstruction. For example, the binary optimizers that appeared in 2019, such as BOLT17 and
Janus18. As discussed in Section 1, the static methodology has advantages and disadvantages over its dynamic counterpart. This
paper presents a dynamic CFG reconstruction technique that improved the precision of DYNINST, a static CFG reconstructor,
created by Meng et al.8. To the best of our knowledge, DYNINST is the most precise static CFG reconstructor to date.
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7 CONCLUSION

This paper provided evidence that the dynamic reconstruction of CFGs from the execution of a program can result in more
precise CFGs than the ones obtained solely via static analyses. However, to correctly reconstruct CFGs in this fashion, it was
necessary to revisit the definition of CFGs to account for phantom nodes and signals. New algorithms had to be engineered
into an efficient and robust tool. This tool, CFGGRIND (https://github.com/rimsa/CFGgrind), was used to analyze several large
programs. The experimental evaluation determined that CFGGRIND outperforms, in terms of precision and efficiency, two other
tools that support dynamic CFG reconstruction: DCFG and BFTRACE. CFGGRIND also improves the precision of DYNINST,
a state-of-the-art static binary analyzer by augmenting it with the ability to handle binaries stripped of debugging information.
The experimental results also evidenced that typical data sets distributed with benchmarks already let a dynamic reconstructor
completely recover a substantial part of all the active functions in large programs. Although intrinsically dependent on program
inputs, this complete recovery has been observed in a large number of programs, including SPEC CPU2017 and CBENCH.
Future work that stems from this paper includes the use of CFGGRIND in different scenarios. First, CFGGRIND’s ability to

track non-aligned and overlapping instructions in the binary representation of a program gives can be useful to reconstruct return-
oriented programming attacks25, even when they are built via Checkoway el al41’s approach based on indirect jumps. Second,
CFGGRIND’s exact profiler is likely to give binary optimizers, such as BOLT17, more information to improve the instruction
layout of programs. The performance improvements that can be derived from this extra information remains to be evaluated.
Finally, CFGGRIND’s dynamic approach can also be useful for the recovery of the control flow of programs obfuscated with
control flow flattening42, the nemesis of static deobfuscation. How much information can be recovered via CFGGRIND when it
is used to analyze obfuscated programs is an open question.
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