

SCGaz – A Synthetic Formal Context Generator with

Density Control for Test and Evaluation of FCA Algorithms

Andrei Rimsa
1
, Luis E. Zárate

2
, Mark A. J. Song

2

1
Departament of Computer Science

Federal Univeristy of Minas Gerais (UFMG) – Belo Horizonte, MG – Brazil

2
Computer Science Department, Applied Computational Intelligence Laboratory

Pontifical Catholic University of Minas Gerais – Belo Horizonte, MG – Brazil

rimsa@dcc.ufmg.br, {zarate,song}@pucminas.br

Abstract. An efficient way to evaluate FCA algorithms is through a

comparative analysis of their performance in typical contexts. Comparisons

are normally conducted using randomly generated contexts that may contain

duplicated attributes and objects and other types of redundancies. Failing to

acknowledge the presence of these redundancies in formal contexts could lead

to erroneous comparison analysis. This paper proposes a tool named SCGaz

(Synthetic Context Generator) that randomly fills synthetic formal contexts

ensuring the absence of some type of redundancies. At the same time, the tool

is able to keep track of the contexts density, allowing users to select any

density in the bounds of the minimum and maximum permitted for a type of

context. Thus, this approach allows more controllable and reliable simulation

environment. In this work, an analysis of the time spent to generate different

types of formal contexts, including large ones, is presented. As a case study, a

performance comparison between Object Intersection algorithm and its dual

version, Attribute Intersections, with contexts generated by SCGaz is

discussed. Contexts produced by SCGaz in conjunction with real world dataset

allow a more in-depth comparative analysis of FCA algorithms performance.

1. Introduction

Formal Concepts Analysis (FCA) [1,4,5,9] is an applied mathematical field whose main

objective is to represent knowledge through specific structures called line diagrams or

lattice. In recent years, the FCA has been used as a powerful technique to represent and

extract knowledge from datasets expressed as cross tables, namely formal contexts. A

Formal Context (G, M, I) is a triple, where G is the set of objects denoted extension, M

is a set of attributes denoted intention, and I is a set of incidences (I : G  M).

 Since each element of the extent has elements of the intent, and element of the

intent is also an attribute of the elements in the extent, it is possible to create a partial

order on the set of concepts: (Ai, Bi) (Ai+1, Bi+1), AiAi+1, BiBi+1. The concepts

partially ordered are called concept lattice.

 With the increase interest of FCA as a technique to represent and extract

knowledge, many algorithms were proposed in the literature. For example, in [11] a

comparison between several of them is presented. Sometimes algorithms were created

envisioning computational performance improvements to extract concepts or to build

the lattice, other times to implement new extraction dependency operators. However, it

is a well known fact that FCA algorithms have different behaviors on different datasets

(contexts). Due to these difficulties to achieve a more controlled experimental

comparison environments, Kuznetsov (2004) proposed two alternatives for dataset

usage as test beds for FCA algorithms evaluation: (1) “real databases” consisting of

open databases recognized by the FCA community in which several patterns can be

specified; and (2) random generated contexts, where the randomness strategies must be

known. The present work is related to that latter.

 Usually, the generation of random formal contexts seeks to encounter a desired

density or the probability that an object has a given attribute. Still, another approach

used in [7] defined a fixed amount of attributes for each object randomly generated, i.e.,

all the objects have the same number of attributes. However, neither of them have a

control over redundant objects (two or more similar objects) or attributes that could be

target for reduction (attributes with incidences on all objects). Controlling theses aspects

is an important step to obtain a more reliable comparative analysis of FCA performance

algorithms. Before the application of any algorithm to extract concepts, a context could

be pre-processed in order to remove attributes and objects that would not contribute to

the final concept lattice or the final set of all concepts. The tool ConExp [3] is an

example that allows the reduction of attributes and objects from existing contexts. This

procedure could improve considerably the concept extraction process, mainly for the

case of large contexts [2]. However, this pre-processing alters the previously context

density, which cannot be know after the process is completed. Another way to build a

context without redundant objects is to generate all possible objects [1..2
|M|

] and select

some objects from that set. This approach ensures no repeated objects, but it loses

control over the density, which could be reached earlier (or later) for the amount of

objects required. By neglecting the existence of redundant attributes and objects, FCA

algorithms may hide or mask its true efficiency. Also, control over the density leads to

more controlled environment to evaluate FCA algorithms behavior.

 This paper proposes a tool SCGaz [8] to create randomly filled synthetic formal

contexts, bounded by a minimum and maximum density for each type of context

selected by a user. The control over contexts have the objective of creating partially

irreducible contexts, that is, contexts that have no redundant objects nor attributes with

incidences on all objects or objects/attributes without incidences. Although the presence

of objects and attributes resulting from the intersection between other objects and

attributes is allowed by SCGaz, in real world applications, they tend to be specific to a

certain domain and should not be removed from the context.

 For type of contexts were considered in this work: |G|=|M|, |G|<|M|, |G|>|M|

and many-valued contexts. For each context, the computational time is calculated to

determine the feasibility of such approach based on the context size (number of

attributes and objects) and its density. The aim is to improve the reliability of

experimental simulations comparing algorithms using partially irreducible contexts.

 This article is divided in 6 sections. In section 2, a review of Formal Contexts is

presented. In section 3, the algorithms used for the generation of synthetic formal

contexts are proposed. In section 4, a case study is provided. Finally, in the last sections

the conclusions and future works are discussed.

2. Formal Context

Formal contexts have the notation K:=(G, M, I), where G is a set of objects, M is a set

of attributes and I is an incidence relation (I  G  M). If an object g  G and an

attribute m M are in the relation I, this is represented by (g, m)  I or gIm and is read

as “the object g has the attribute m”.

 Given a set of objects A  G from a formal context K:=(G, M, I), it could be

asked which attributes from M are common to all those objects. Similarly, it could be

asked: “for a set B  M, which objects have the attributes from B”. These questions

define the derivation operators, which are formally defined as:

A’:= {m  M | gIm  g  A} (1)

B’:= {g  G | gIm  m  B} (2)

 A special case of derivate sets occurs when empty sets of objects or attributes are

considered to be derivate:

A  G = Ø  A’:=M ; B  M = Ø B’:=G (3)

 Even though this definition of formal contexts is valid for many situations,

mainly to represent objects that have the presence or absence of some properties

(attributes), it is not a good representation for the major part of situations where objects

have attributes that can take on several values. For this case, attributes are called many-

valued attributes. So, contexts where the set M of attributes is composed by many-

valued attributes are called many-valued contexts. The notation of the formal context is

given by the quadruple (G, M, V, I), where G is a set of objects; M is a set of many-

valued attributes; V is the set of attribute-values; and I is a ternary relation between G, M

and V (I  GMV). In general, many-valued contexts can be transformed into single-

valued contexts in order to obtain the formal concepts. A simple way to do such

transformation is to replace each many-valued attribute by the corresponding attribute-

value pair. Note that the number of attribute-value pairs for each many-valued attribute

is given by the cardinality of the set V (i.e. |V|). It is important to remember that the

attributes can have continuous values. So, for this case, it may be interesting to choose

intervals of values for the attributes.

3. Synthetic Formal Context Generation

3.1. Typical Formal Context Analysis

In this work, formal contexts were selected in order to cover the largest range of real

application possible. The contexts considered are: |G|=|M|, |G|<|M|, |G|>|M| and

many-valued contexts. The minimum and maximum densities related to each type are

analyzed for a defined number of objects and attributes. Like that, it is ensured that a

user will not choose a density outside this range. A set of rules based on FCA

fundaments could be established in order to generate the synthetic formal contexts.

Theorem 1: Given a formal context K: = (G, M, I) and its formal concept ß(G, M, I) if

ß(G, M, I) ≈ ß(G, M – {m}, I ∩ (G x (M – {m}))), then m is a attribute reducible.

Corollary 1: Considering m  M, Im  I, and Im = G x {m}, if Im = { }, then m is

attribute reducible.

Corollary 2: Considering m  M, Im  I, and Im = G x {m}, if |Im| = |G|, then m is

attribute reducible.

Theorem 2: Given a formal context K: = (G, M, I) and its formal concept ß(G, M, I), if

ß(G, M, I) ≈ ß(G – {g}, M, I ∩ ((G – {g}) x M)), then g is object reducible.

Corollary 3: Considering g  G, Ig  I and Ig = {g} x M, if Ig = { }, then g is object

reducible.

Corollary 4: Considering g  G, Ig  I and Ig = {g} x M, if |Ig| = |M|, then g is object

reducible.

Definition 1: If  g, h  G such that g’ = h’ then g = h. Accordingly, for m, n  M,

m’=n’ implies m = n. The context is then called clarified. As a result g or h is reducible.

 The Theorems 1 and 2 define respectively what a reducible attribute and object

is, that is, attributes and objects that can be removed from the context with no impact on

the lattice structure. It is important to note that an attribute can be removed from the

formal context if it is not shared by any objects (Corollary 1) or, on opposite, when all

objects share it (Corollary 2). The same applies to any object that does not have any

attributes (Corollary 3) or, on opposite, that has all the attributes (Corollary 4). When

two objects share the same attributes, FCA considers them conceptually identical

(redundant). Hence, these objects can be reduced to a single one (Definition 1). The

SCGaz considers all these restriction when generating formal contexts. The main formal

contexts considered in this work are now presented with their respectively minimum

(Dmin) and maximum (Dmax) density values. Where g=|G|, m=|M| and v=|V|.

a) g = m

Table 1. Minimum Density

 a1 a2 a3 a4 a5

o1 X

o2 X

o3 X

o4 X

o5 X

Table 2. Maximum Density

 a1 a2 a3 a4 a5

o1 X X X X

o2 X X X X

o3 X X X X

o4 X X X X

o5 X X X X

g
D

1
min  (4)

g

g
D

1
max


 (5)

b) g < m

Table 3. Minimum Density

 a1 a2 a3 a4 a5

o1 X X

o2 X X

o3 X

Table 4. Maximum Density

 a1 a2 a3 a4 a5

o1 X X X

o2 X X X

o3 X X X X

g
D

1
min  (6)

g

g
D

1
max


 (7)

c) g > m

Table 5. Minimum Density

 a1 a2 a3 a4

o1 X

o2 X

o3 X

o4 X

o5 X X

o6 X X

o7 X X

Table 6. Maximum Density

 a1 a2 a3 a4

o1 X X X

o2 X X X

o3 X X X

o4 X X X

o5 X X

o6 X X

o7 X X

0)max(

)1()(

1

1
min 





 




 RhandCgR
mg

hRiC

D
h

i

m

i

h

i

m

i

 (8)

0)max(

)1(])([

1

)(

1

)(

max 




 










RhandCgR
mg

hmRimC

D
h

i

m

im

h

i

m

im

 (9)

d) Many-Valued

v

m
DD  maxmin (10)

Table 7. Minimum and Maximum Density

a1 a2 a3

i1 i2 i3 i4 i5 i6 i7 i8 i9

o1 X X X

o2 X X X

o3 X X X

o4 X X X

o5 X X X

 All rules of section 3.1 are ensured for attributes (a1..am) and objects (o1..on) in

many-valued contexts, but are not extended for many-valued attributes (i1..iV).

 Table 8 shows the relation between the minimum and maximum number of

objects for all four considered contexts. Ensuring these minimum and maximum

conditions is an important step to obtain a controlled context. It is important to

emphasize that in the SCGaz tool each context is automatically detected based on input

data (number of objects and attributes). This is due to the fact that each context requires

a different procedure for its correct filling.

Table 8. Minimum and maximum of objects for each considered context.

Context Type Objects Minimum Objects Maximum

g = m m m

g < m 2 m – 1

g > m m + 1 2
m

 - 2

Many-Valued 1 


m

j

ja
1

3.2. Synthetic Formal Context Generation with Density Control

In this section, the algorithms related to the initialization and filling process to build the

formal contexts are presented.

Initialization of Formal Contexts. In order to generate the synthetic context, it is

primarily important to determine its type (section 3.1) to calculate its minimum density.

For each context, a distinct procedure must be used to ensure the absence of reducible

attributes and objects (Theorems 1 and 2). Figure 1 illustrates the initialization process.

Fig. 1. Diagram for Formal Context Initialization.

 Several modules have been developed for the SCGaz tool. The algorithm’s

kernel is described as follow. Algorithm 1 shows the pseudo-code for the initialization

process of synthetic contexts. Initially, the algorithm identifies each type of context that

will be used in the initial filling process based on the number of objects and attributes

specified by a user. The objects are created according to a specific subroutine for each

context described in section 3.1. Objects are generated by the addObject operation, in

which it tries to add the object into a randomly selected line on the table. Thus, if an

object is successfully added to the context, then another one will be generated for further

filling. Otherwise, if a newly generated object is already present in the context, then

another object, semantically identical (the same number of attributes), must be generated

again. In contexts with more objects than attributes, identical objects can repeatedly be

generated. For this reason, another distinct object must be generated in order to continue

the initial filling of the context. This process is repeated until all objects are generated

according to the minimum density value defined for the formal context. The algorithms

and subroutines are available from [8]. It is important to notice that the subroutines were

created to avoid the creation of inconsistent objects, according to the rules earlier

defined in section 3.1.

Algorithm 1. Synthetic Context Initialization

 1: in attributes, objects

 2: ctx = new SyntheticContext

 3: type = selectContextType(attributes, objects)

 4: while type->hasMoreObjects() do

 5: obj = type->getObject();

 6: if ctx->addObject(obj) then

 7: type->nextObject()

 8: endif

 9: done

10: return ctx

Filling Formal Contexts. After the minimum density value for the context is

reached, the next step is to continue its filling until it reaches a user selected density, the

maximum density value or until there are no more cells in the context to be used. Note

that this process doesn’t need to meet Corollaries 1 and 3 since it has already been met

during the context initialization. The rest of the filling process is given by the pseudo-

algorithms below represented.

 Note that this process doesn’t need to meet Corollaries 1 and 3 since it has

already been met during the context initialization. The rest of the filling process is given

by the pseudo-algorithms below represented.

Algorithm 2. Random filling of the context

controlling the density

 1: in desejadoD

 2: in ctx

 3: assert (ctx-> minD)  desiredD (ctx-> maxD)

 4: max = false

 5: while ctx->density < desiredD and !max do

 6: if !bruteFilling(ctx, ATTEMPTS_MAX) then

 7: if !smartFilling(ctx) then

 8: max = true

 9: endif

10: endif

11: done

 Algorithm 2 shows the main idea to continue the filling of the context at a higher

level of abstraction, where two auxiliary algorithms were used. Algorithm 2.2 (Smart

filling) presents a smarter way to randomly filling the contexts cells. It keeps tracks on

those cells that were already selected for marking and could not be previously used. By

doing so, the algorithm avoids selecting unusable cells and can randomly select the

remaining ones that still could be used. However, this last algorithm has a high

computational cost. To improve the filling process, another algorithm has been

proposed, Algorithm 2.1 (Brute Force Filling). It uses a brute force approach to fill each

cell in a faster way. Each loop of Algorithm 2 is responsible for the creation of one

incidence on the context. The process continues until a chosen density is achieved or

until the contexts has no more usable cells. Details about the auxiliary algorithms are

presented below.

Algorithm 2.1. Brute force filling of the context.

 1: function bruteFilling

 2: in ctx

 3: in attempts

 4: for x = 0 ; x < attempts ; x = x + 1 do

 5: attr = random % ctx->attributes

 6: objc = random % ctx->objects

 7: if ctx->setPosition(attr, objc) then

 8: return true

 9: endif

10: done

11: return false

12: endfunction

 First, the “Brute Force Filling” algorithm is responsible for the best performance

in the context filling. Positions (i, j) in the table are randomly sorted for its possible use.

Each position must be checked for availability and if it is in accordance with the

definitions and corollaries described in section 3.1. Cells are continually sorted until an

able cell position is found or until it reaches a certain number of iteration (in this tool,

10,000 iterations). If the maximum iterations value is reached, then the algorithm

“Smart Filling” is activated, according to Algorithm 2. Although Algorithm 2.1 has

lower overhead in the filling process, it can hardly converge to the maximum density.

This is due to the low likelihood of sorting a free usable cell – it decreases as the density

increases. This algorithm has another disadvantage. It cannot determine when there are

no more usable cells on the context.

Algorithm 2.2: Smart Filling of the context.

 1: function smartFilling

 2: in ctx

 3: list<Object> objc = ctx->allObjects()

 4: while objc->size > 0 do

 5: objc_pos = random % objcs->size

 6: objc = objs->removeElement(objc_pos)

 7: list<Attribute> attrs = obj->unsettedAttributes()

 8: while atrrs->size > 0 do

 9: attr_pos = random % atrs->tamanho

10: attr = attrs->removeElemento(attr_pos)

11: if ctx->setPosition(attr->pos, objc->pos) then

12: return true

13: endif

14: done

15: done

16: return false

17: endfunction

 Algorithm 2.2, as previously mentioned, allows a smarter filling on the context,

while still maintaining its randomness. A list containing all objects in the context is

created where objects are being sorted and removed from it. For each object removed

from the list, another list is created that holds unmarked attributes for that object. Again,

attributes are being sorted and removed from that list forming the context cells position,

par(attribute, object). The assembled par is submitted for marking by the setPosition

function.

 Due to the restrictions imposed during the filling process, one selected density

value may never be reached. There are situations where there are no possible markings

to increase the contexts density, requiring a forced algorithm interrupt. These situations

happen only for density values near the maximum. For that reason, the achieved density

is then considered the maximum for that context.

3.3. Synthetic Context Generation Analysis

In this section, the computational time required to generate the context for the four

scenarios proposed before is presented. Three density values, for each combination of

attributes and object, were considered: Dmin, D50% and Dmax. Besides for many-valued

contexts, that has a single fixed density. The simulations were made on a Pentium IV

3.06 GHz with HT 2Gb of memory. The simulation results are presented in Tables 9,

10, 11 and 12.

Table 9. Simulation for Contexts |G|=|M|.

Attributes Objects
Time (s)

for Dmin

Time (s)

for D50%

Time (s)

for Dmax

100 100 0.00 0.03 0.06

500 500 0.01 2.67 5.53

1000 1000 0.05 20.97 42.79

2000 2000 0.23 169.18 342.29

3000 3000 0.87 635.24 1297.00

4000 4000 2.34 1449.41 3065.49

5000 5000 4.54 4856.03 9401.58

Table 10. Simulation for Contexts |G|<|M|.

Attributes Objects
Time (s)

for Dmin

Time (s)

for D50%

Time (s)

for Dmax

100 50 0.00 0.01 0.02

500 250 0.01 0.67 1.43

1000 500 0.01 5.28 10.97

2000 1000 0.04 42.41 86.42

3000 1500 0.10 145.42 291.14

4000 2000 0.20 343.58 700.92

5000 2500 0.38 698.32 1453.11

Table 11. Simulation for Contexts |G|>|M|.

Attributes Objects
Time (s)

for Dmin

Time (s)

for D50%

Time (s)

for Dmax

100 200 0.01 0.09 0.19

500 1000 0.08 10.59 21.58

1000 2000 0.43 84.41 170.23

2000 4000 2.61 988.73 2112.53

3000 6000 12.03 6001.92 12780.21

4000 8000 28.95 17732.17 35577.00

5000 10000 47.10 37028.39 72686.15

Table 12. Simulation for Many-Valued Contexts

Attributes Attribute-Values Objects Density (%) Time (s)

10 10 10000 10.00 2.14

10 20 10000 5.00 2.23

10 30 10000 3.33 2.43

10 40 10000 2.50 2.51

10 50 10000 2.00 2.93

 The algorithms have had an exponential time for each type of context

considered. The density values have a direct impact on the computational time. The

higher the density value, the higher will be the necessary time to create the context.

Contexts with lower density value, such as the many-valued one, have a better overall

performance.

 It is important to notice that contexts with high number of objects tend to have

the worst performance. Because of Definition 1, each object must be compared with the

others on the context to ensure no duplicity. Thus, as the number of objects grows, the

comparisons between those objects grow exponentially.

4. Case Study
To demonstrate the feasibility of the SCGaz as a tool for synthetic contexts generation,

two different algorithms were evaluated: Object Intersections, discussed in [1] and its

dual version, Attribute Intersections. They were both evaluated over three different types

of contexts and with densities ranging from lower to higher values. It is noteworthy that

both use the incremental intersections strategy to compute the formal concepts.

 Those two algorithms have a disadvantage because they fail to prevent the

calculations of concepts already computed previously. A newly obtained concept must

be verified in relation to duplication before it can be added to the concepts list.

Therefore, to improve the search for concepts on that list, a hash table has been used,

implemented with collisions resolved by linked lists. In such cases, the complexity

related to the Attribute Intersections and Object Intersections algorithms is respectively:

O(|M||C||K|) and O(|G||C||K|). Where C is the list containing all concepts and K is the

sub-lists of |C| that are dependent on the hash function used. Thus, 1 <= |K| <= |C|,

where K should be ideally one (1).

 With the purpose of simplicity, only 3 types of contexts have been considered in

the evaluation: |G|>|M|, |G|<|M| and |G|=|M|. The algorithms have been implemented

in C++ and both share the same software structure, including the same derivation

operator and hash function. In the experiments, densities have been selected ranging

from 10% to 90%. For each density value, one hundred (100) random contexts have

been generated. The average, minimum and maximum execution times related to each

algorithm are showed in Figures 2, 3 and 4. The simulations have been performed on a

Pentium IV 3.06 GHz with HT 2Gb of memory.

(a) Average times.

(b) Minimum and maximum times.

Fig 2. Attribute and Object Intersection for contexts |G|>|M|, where |G|=40 and |M|=20.

 In contexts where |G|>|M|, the Attribute Intersections algorithm has had a better

performance, Figure 2(a). For densities below 60%, the computations of all concepts

have spent approximately 1 second for both algorithms. However, in higher densities,

the number of concepts generated has increased and therefore the number of

intersections needed has increased, resulting in a higher computational time cost. In

these situations, a great discrepancy between the two algorithms can be seen.

 According to the algorithms complexity, it is expected that the Object

Intersection algorithm presents a worse performance for context with more objects than

attributes, Figure 2(a). However, it is observed in Figure 2(b) that the algorithm in some

occasions has had better results compared with its dual version. But as noted, this only

occurs for fewer of the contexts evaluated.

(a) Average times.

(b) Minimum and maximum times.

Fig. 3. Attribute and Object Intersection for contexts |G|<|M|, where |G|=20 and |M|=40.

 Figure 3(a) shows the expected behavior for both of the algorithms. In this case,

the Object Intersections algorithm has been more efficient than its dual version for

contexts with |G|<|M|. It can be observed experimentally that the algorithms behave

correctly according to their order of complexity. Again, there were contexts where the

Attribute Intersections algorithm has a better performance, Figure 3(b), over its dual

version, but in general, the use of the Object Intersections algorithm is more adequate.

(a) Average times.

(b) Minimum and maximum times.

Fig. 4. Attribute and Object Intersection for contexts |G|=|M|, where |G|=25 and |M|=25.

 The last experiment has considered contexts in which |G|=|M|. This time, both

algorithms have the same order of complexity. Thus, their average execution time is

extremely similar, as verified in Figure 4a. For the minimum and maximum times, there

is a certain different between them, as seen in Figure 4b. Considering the maximum

time limit, the Object Intersections algorithm has had a better performance. Considering

the minimum time limit, the Attribute Intersections algorithm has been slightly more

efficient. Choosing the best algorithm to be applied in these situations is a difficult task.

The implementation of both becomes very sensitive to the context incidents, rather than

the number of attributes and objects.

 Through simulations, it is possible to conclude that the Attribute Intersections

algorithm should be used when context has |G|>|M|. The Object Intersections algorithm

should be used when |G|<|M|. When |G|=|M|, choosing the most efficient algorithm

becomes a more difficult task, since both have practically the same behaviour. This

choice, for this last type of context, should be driven based on the progression of the

concepts added to the list. Unfortunately, to previously determine in which progression

the concepts are added to the list depends on how the incidences are distributed in the

context. Heuristics must be created, applied to contexts, which could help identifying in

advance some algorithm execution tendency. Efforts in this sense must be taken to

select which of those two algorithms should be applied to contexts |G|=|M|. The analysis

regarding these algorithms was possible thanks to a contexts generation environment,

which permits the evaluation of them in especial conditions such as the density.

5. Conclusion

 This work presents a set of strategies used to create a simulation environment to

generate partially irreducible contexts while controlling their density values. An analysis

of computational time spent to create different contexts has been provided. It has been

verified the possibility to create contexts in a reasonable computational time, even for

large contexts. This work embraces Kuznetsov (2004) proposal to count on randomly

generate formal contexts as testbeds to evaluate FCA algorithms. In this work, a new

tool, SCGaz, is conceived to generate partially irreducible formal contexts.

 Another way to create irreducible contexts consists in generating randomly

uncontrolled formal contexts (considering or not a density value) to be latter applied to a

context reduction algorithm. However, if applied, the density will be calculated a

posteriori, losing control over the simulations environments. The reduction will also

affect the amount of both attributes and objects, thus creating an unpredictable behavior

of the resulting context. Therefore, the main advantage of the SCGaz is to create

partially irreducible contexts with the amount of attributes, objects and density defined

before its creation, i.e. a priori. Because of that, a more effective control over the

simulations and analysis can be done.

 Another important aspect of this work is not to consider fully irreducible

contexts. Some of the objects and attributes that could be removed from a context may

be truly meaningful to a specific application study. Once removed, those objects and

attributes cannot be recovered from the built conceptual lattice.

 As a case study, it has been used contexts generated by the SCGaz tool to

evaluate two algorithms used to extract concepts: Object Intersections and Attribute

Intersections. Through the use of this tool, it was possible to evaluate intervals of

performance for both algorithms. As a result, it has been shown that the best algorithm

to be applied must be selected based on the context features, such as objects, attributes

and density.

6. Future Work

If new restrictions are imposed to the context, then these contexts could be considered

irreducible. If two or more attributes have the same implication set (identical columns),

then a new restriction could be specified. They could be reduced to a single attribute

(Definition 2).

Definition 2: If  m, n  M such that m' = n' then m = n. Accordingly, for any g, h 

G, g' = h' implies in g = h. The context is therefore called clarified. Thus m or n can be

reducible.

As mentioned before, the ConExp tool [3] uses another reducing strategy that still

maintains the lattice structure. If an intersection between any objects result in another

object present in the context, this one could be removed (Corollary 6). The same

applies for attributes (Corollary 5).

Corollary 5: Considering m  M and  n,o  M, such that n  o = m for m  n  o,

then m attribute reducible.

Corollary 6: Considering  g  G and  h,i  G, such that h  i = g for g  h  i, then

g is object reducible.

References
1. Carpineto, C.; Romano, G. Concept Data Analysis: Theory and Applications.

Indianapolis, IN, USA: John Wiley & Sons, 2004. ISBN 0470850558.

2. Cole, R. J.; Eklund, P. W.; Groh, B. Dealing with Large Contexts in Formal Concept

Analysis: A Case Study Using Medical Texts. In: International Symposium on

Knowledge Retrieval, Use, and Storage for Efficiency, KRUSE-97. Berlin,

Heidelberg: Springer Verlag, 1997. p. 151–164.

3. CONEXP, Yevtushenko, S., et. al: “Concept Explorer”, Open Source Java Software

Avaliable at http://sourceforge.net/projects/conexp, Release 1.3, 2008.

4. Ganter, B.; Stumme, G.; Wille, R. Formal Concept Analysis, Foundations and

Applications, v. 3626 de Lecture Notes in Computer Science, (Lecture Notes in

Computer Science). Berlin, Heidelberg: Springer, 2005. ISBN 3-540-27891-5.

5. Ganter, B.; Wille, R. Formal Concept Analysis: Mathematical Foundations. Secaucus,

NJ, USA: Springer-Verlag New York, Inc., 1997. ISBN 3540627715.

6. Kuznetsov, S.O. Algorithms for Computing Closed Sets: A Review, Workshop

Evaluation des Algorithms de Generation de Concept et de Regles, Clermont-Ferrand

at the ECG Conference, January 2004.

7. Kuznetsov, S.O.; Obiedkov S.A. Comparing Performance of Algorithms for

Generating Concept Lattices, Journal of Experimental and Theoretical Artificial

Intelligence, vol. 14 (2002), pp. 189-216.

8. SCGaz, Rimsa, A., at. Al: SCGaz tool (Synthetic Context Generator), Open Source

Software Available at http://www.inf.pucminas.br/projetos/licap, Release 0.8, 2008.

9. Wille, R. Formal Concept Analysis as Mathematical Theory of Concepts and Concept

Hierarchies. In: Formal Concept Analysis. Springer Verlag, 2005. p. 1–33. ISBN 978-

3-540-27891-7.

10.Burmeister, P. Formal Concept Analysis with ConImp: Introduction to the Basic

Features. Technical Report, TU-Darmstadt, Germany, 1996.

11.Tilley, Thomas (2004). Tool Support for FCA. In: Eklund (ed.), Concept Lattices:

Second International Conference on Formal Concept Analysis, Springer Verlag, 2004.

LNCS 2961, p. 104-111.

