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Abstract. An efficient way to evaluate FCA algorithms is through a 

comparative analysis of their performance in typical contexts. Comparisons 

are normally conducted using randomly generated contexts that may contain 

duplicated attributes and objects and other types of redundancies. Failing to 

acknowledge the presence of these redundancies in formal contexts could lead 

to erroneous comparison analysis. This paper proposes a tool named SCGaz 

(Synthetic Context Generator) that randomly fills synthetic formal contexts 

ensuring the absence of some type of redundancies. At the same time, the tool 

is able to keep track of the contexts density, allowing users to select any 

density in the bounds of the minimum and maximum permitted for a type of 

context. Thus, this approach allows more controllable and reliable simulation 

environment. In this work, an analysis of the time spent to generate different 

types of formal contexts, including large ones, is presented. As a case study, a 

performance comparison between Object Intersection algorithm and its dual 

version, Attribute Intersections, with contexts generated by SCGaz is 

discussed. Contexts produced by SCGaz in conjunction with real world dataset 

allow a more in-depth comparative analysis of FCA algorithms performance. 

1. Introduction 

Formal Concepts Analysis (FCA) [1,4,5,9] is an applied mathematical field whose main 

objective is to represent knowledge through specific structures called line diagrams or 

lattice. In recent years, the FCA has been used as a powerful technique to represent and 

extract knowledge from datasets expressed as cross tables, namely formal contexts. A 

Formal Context (G, M, I) is a triple, where G is the set of objects denoted extension, M 

is a set of attributes denoted intention, and I is a set of incidences (I : G  M).  

 Since each element of the extent has elements of the intent, and element of the 

intent is also an attribute of the elements in the extent, it is possible to create a partial 

order on the set of concepts: (Ai, Bi) (Ai+1, Bi+1), AiAi+1, BiBi+1.  The concepts 

partially ordered are called concept lattice. 

 With the increase interest of FCA as a technique to represent and extract 

knowledge, many algorithms were proposed in the literature. For example, in [11] a 

comparison between several of them is presented. Sometimes algorithms were created 



  

envisioning computational performance improvements to extract concepts or to build 

the lattice, other times to implement new extraction dependency operators. However, it 

is a well known fact that FCA algorithms have different behaviors on different datasets 

(contexts). Due to these difficulties to achieve a more controlled experimental 

comparison environments, Kuznetsov (2004) proposed two alternatives for dataset 

usage as test beds for FCA algorithms evaluation: (1) “real databases” consisting of 

open databases recognized by the FCA community in which several patterns can be 

specified; and (2) random generated contexts, where the randomness strategies must be 

known. The present work is related to that latter. 

 Usually, the generation of random formal contexts seeks to encounter a desired 

density or the probability that an object has a given attribute. Still, another approach 

used in [7] defined a fixed amount of attributes for each object randomly generated, i.e., 

all the objects have the same number of attributes. However, neither of them have a 

control over redundant objects (two or more similar objects) or attributes that could be 

target for reduction (attributes with incidences on all objects). Controlling theses aspects 

is an important step to obtain a more reliable comparative analysis of FCA performance 

algorithms. Before the application of any algorithm to extract concepts, a context could 

be pre-processed in order to remove attributes and objects that would not contribute to 

the final concept lattice or the final set of all concepts. The tool ConExp [3] is an 

example that allows the reduction of attributes and objects from existing contexts. This 

procedure could improve considerably the concept extraction process, mainly for the 

case of large contexts [2]. However, this pre-processing alters the previously context 

density, which cannot be know after the process is completed. Another way to build a 

context without redundant objects is to generate all possible objects [1..2
|M|

] and select 

some objects from that set. This approach ensures no repeated objects, but it loses 

control over the density, which could be reached earlier (or later) for the amount of 

objects required. By neglecting the existence of redundant attributes and objects, FCA 

algorithms may hide or mask its true efficiency. Also, control over the density leads to 

more controlled environment to evaluate FCA algorithms behavior. 

 This paper proposes a tool SCGaz [8] to create randomly filled synthetic formal 

contexts, bounded by a minimum and maximum density for each type of context 

selected by a user. The control over contexts have the objective of creating partially 

irreducible contexts, that is, contexts that have no redundant objects nor attributes with 

incidences on all objects or objects/attributes without incidences. Although the presence 

of objects and attributes resulting from the intersection between other objects and 

attributes is allowed by SCGaz, in real world applications, they tend to be specific to a 

certain domain and should not be removed from the context. 

 For type of contexts were considered in this work: |G|=|M|, |G|<|M|, |G|>|M| 

and many-valued contexts. For each context, the computational time is calculated to 

determine the feasibility of such approach based on the context size (number of 

attributes and objects) and its density. The aim is to improve the reliability of 

experimental simulations comparing algorithms using partially irreducible contexts. 

 This article is divided in 6 sections. In section 2, a review of Formal Contexts is 

presented. In section 3, the algorithms used for the generation of synthetic formal 



  

contexts are proposed. In section 4, a case study is provided. Finally, in the last sections 

the conclusions and future works are discussed. 

2. Formal Context 

Formal contexts have the notation K:=(G, M, I), where G is a set of objects, M is a set 

of attributes and I is an incidence relation (I  G  M). If an object g  G and an 

attribute m M are in the relation I, this is represented by (g, m)  I or gIm and is read 

as “the object g has the attribute m”. 

 Given a set of objects A  G from a formal context K:=(G, M, I), it could be 

asked which attributes from M are common to all those objects. Similarly, it could be 

asked: “for a set B  M, which objects have the attributes from B”. These questions 

define the derivation operators, which are formally defined as: 

A’:= {m  M | gIm  g  A} (1) 

B’:= {g  G | gIm  m  B} (2) 

 A special case of derivate sets occurs when empty sets of objects or attributes are 

considered to be derivate: 

A  G = Ø   A’:=M ; B  M = Ø  B’:=G (3) 

 Even though this definition of formal contexts is valid for many situations, 

mainly to represent objects that have the presence or absence of some properties 

(attributes), it is not a good representation for the major part of situations where objects 

have attributes that can take on several values. For this case, attributes are called many-

valued attributes. So, contexts where the set M of attributes is composed by many-

valued attributes are called many-valued contexts. The notation of the formal context is 

given by the quadruple (G, M, V, I), where G is a set of objects; M is a set of many-

valued attributes; V is the set of attribute-values; and I is a ternary relation between G, M 

and V (I  GMV). In general, many-valued contexts can be transformed into single-

valued contexts in order to obtain the formal concepts. A simple way to do such 

transformation is to replace each many-valued attribute by the corresponding attribute-

value pair. Note that the number of attribute-value pairs for each many-valued attribute 

is given by the cardinality of the set V (i.e. |V|). It is important to remember that the 

attributes can have continuous values. So, for this case, it may be interesting to choose 

intervals of values for the attributes. 

3. Synthetic Formal Context Generation 

3.1. Typical Formal Context Analysis 

In this work, formal contexts were selected in order to cover the largest range of real 

application possible. The contexts considered are: |G|=|M|, |G|<|M|, |G|>|M| and 

many-valued contexts. The minimum and maximum densities related to each type are 

analyzed for a defined number of objects and attributes. Like that, it is ensured that a 

user will not choose a density outside this range. A set of rules based on FCA 

fundaments could be established in order to generate the synthetic formal contexts. 



  

Theorem 1: Given a formal context K: = (G, M, I) and its formal concept ß(G, M, I) if  

ß(G, M, I) ≈ ß(G, M – {m}, I ∩ (G x (M – {m}))), then m is a attribute reducible.  

 

Corollary 1: Considering m  M, Im  I, and Im = G x {m}, if Im = { }, then m is 

attribute reducible. 

 

Corollary 2: Considering m  M, Im  I, and Im = G x {m}, if |Im| = |G|, then m is 

attribute reducible.  

 

Theorem 2: Given a formal context K: = (G, M, I) and its formal concept ß(G, M, I), if 

ß(G, M, I) ≈ ß(G – {g}, M, I ∩ ((G – {g}) x M)), then g is object reducible.  

 

Corollary 3: Considering g  G, Ig  I and Ig = {g} x M, if Ig = { }, then g is object 

reducible.  

 

Corollary 4: Considering g  G, Ig  I and Ig = {g} x M, if |Ig| = |M|, then g is object 

reducible.  

 

Definition 1: If  g, h  G such that g’ = h’ then g = h. Accordingly, for m, n  M, 

m’=n’ implies m = n. The context is then called clarified. As a result g or h is reducible. 

 

 The Theorems 1 and 2 define respectively what a reducible attribute and object 

is, that is, attributes and objects that can be removed from the context with no impact on 

the lattice structure. It is important to note that an attribute can be removed from the 

formal context if it is not shared by any objects (Corollary 1) or, on opposite, when all 

objects share it (Corollary 2). The same applies to any object that does not have any 

attributes (Corollary 3) or, on opposite, that has all the attributes (Corollary 4). When 

two objects share the same attributes, FCA considers them conceptually identical 

(redundant). Hence, these objects can be reduced to a single one (Definition 1). The 

SCGaz considers all these restriction when generating formal contexts.  The main formal 

contexts considered in this work are now presented with their respectively minimum 

(Dmin) and maximum (Dmax) density values. Where g=|G|, m=|M| and v=|V|. 

a) g = m 

Table 1. Minimum Density 

 a1 a2 a3 a4 a5 

o1 X     

o2  X    

o3   X   

o4    X  

o5     X 

Table 2. Maximum Density 

 a1 a2 a3 a4 a5 

o1  X X X X 

o2 X  X X X 

o3 X X  X X 

o4 X X X  X 

o5 X X X X  
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b) g < m 

Table 3. Minimum Density 

 a1 a2 a3 a4 a5 

o1 X   X  

o2  X   X 

o3   X   

Table 4. Maximum Density 

 a1 a2 a3 a4 a5 

o1  X X  X 

o2 X  X X  

o3 X X  X X 

g
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g
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c) g > m 

Table 5. Minimum Density 

 a1 a2 a3 a4 

o1 X    

o2  X   

o3   X  

o4    X 

o5 X X   

o6  X X  

o7   X X 

Table 6. Maximum Density 

 a1 a2 a3 a4 

o1  X X X 

o2 X  X X 

o3 X X  X 

o4 X X X  

o5   X X 

o6 X   X 

o7 X X   
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Table 7. Minimum and Maximum Density 

 
a1 a2 a3 

i1 i2 i3 i4 i5 i6 i7 i8 i9 

o1 X  X   X    

o2  X  X   X   

o3 X    X   X  

o4  X X      X 

o5 X   X  X    

 

 All rules of section 3.1 are ensured for attributes (a1..am) and objects (o1..on) in 

many-valued contexts, but are not extended for many-valued attributes (i1..iV). 

  Table 8 shows the relation between the minimum and maximum number of 

objects for all four considered contexts. Ensuring these minimum and maximum 

conditions is an important step to obtain a controlled context. It is important to 

emphasize that in the SCGaz tool each context is automatically detected based on input 

data (number of objects and attributes). This is due to the fact that each context requires 

a different procedure for its correct filling. 

 

Table 8. Minimum and maximum of objects for each considered context. 

Context Type Objects Minimum Objects Maximum 

g = m m m 

g < m 2 m – 1 

g > m m + 1 2
m

 - 2 

Many-Valued 1 


m

j

ja
1

 

 

3.2. Synthetic Formal Context Generation with Density Control 

In this section, the algorithms related to the initialization and filling process to build the 

formal contexts are presented. 

Initialization of Formal Contexts. In order to generate the synthetic context, it is 

primarily important to determine its type (section 3.1) to calculate its minimum density. 

For each context, a distinct procedure must be used to ensure the absence of reducible 

attributes and objects (Theorems 1 and 2). Figure 1 illustrates the initialization process. 

 



  

 

Fig. 1. Diagram for Formal Context Initialization. 

 Several modules have been developed for the SCGaz tool. The algorithm’s 

kernel is described as follow. Algorithm 1 shows the pseudo-code for the initialization 

process of synthetic contexts. Initially, the algorithm identifies each type of context that 

will be used in the initial filling process based on the number of objects and attributes 

specified by a user. The objects are created according to a specific subroutine for each 

context described in section 3.1. Objects are generated by the addObject operation, in 

which it tries to add the object into a randomly selected line on the table. Thus, if an 

object is successfully added to the context, then another one will be generated for further 

filling. Otherwise, if a newly generated object is already present in the context, then 

another object, semantically identical (the same number of attributes), must be generated 

again. In contexts with more objects than attributes, identical objects can repeatedly be 

generated. For this reason, another distinct object must be generated in order to continue 

the initial filling of the context. This process is repeated until all objects are generated 

according to the minimum density value defined for the formal context. The algorithms 

and subroutines are available from [8]. It is important to notice that the subroutines were 

created to avoid the creation of inconsistent objects, according to the rules earlier 

defined in section 3.1. 

 
Algorithm 1. Synthetic Context Initialization 

 1: in attributes, objects 

 2: ctx = new SyntheticContext 

 3: type = selectContextType(attributes, objects) 

 4: while type->hasMoreObjects() do 

 5:   obj = type->getObject(); 

 6:   if ctx->addObject(obj) then 

 7:     type->nextObject() 

 8:   endif 

 9: done 

10: return ctx 

 

Filling Formal Contexts. After the minimum density value for the context is 

reached, the next step is to continue its filling until it reaches a user selected density, the 

maximum density value or until there are no more cells in the context to be used. Note 

that this process doesn’t need to meet Corollaries 1 and 3 since it has already been met 

during the context initialization. The rest of the filling process is given by the pseudo-

algorithms below represented. 

 Note that this process doesn’t need to meet Corollaries 1 and 3 since it has 

already been met during the context initialization. The rest of the filling process is given 

by the pseudo-algorithms below represented. 

 



  

Algorithm 2. Random filling of the context 

controlling the density 

 1: in desejadoD  

 2: in ctx 

 3: assert (ctx-> minD )  desiredD (ctx-> maxD ) 

 4: max = false 

 5: while ctx->density < desiredD and !max do 

 6:   if !bruteFilling(ctx, ATTEMPTS_MAX) then 

 7:     if !smartFilling(ctx) then 

 8:       max = true 

 9:     endif 

10:   endif 

11: done 

 

 Algorithm 2 shows the main idea to continue the filling of the context at a higher 

level of abstraction, where two auxiliary algorithms were used. Algorithm 2.2 (Smart 

filling) presents a smarter way to randomly filling the contexts cells. It keeps tracks on 

those cells that were already selected for marking and could not be previously used. By 

doing so, the algorithm avoids selecting unusable cells and can randomly select the 

remaining ones that still could be used. However, this last algorithm has a high 

computational cost. To improve the filling process, another algorithm has been 

proposed, Algorithm 2.1 (Brute Force Filling). It uses a brute force approach to fill each 

cell in a faster way. Each loop of Algorithm 2 is responsible for the creation of one 

incidence on the context. The process continues until a chosen density is achieved or 

until the contexts has no more usable cells. Details about the auxiliary algorithms are 

presented below. 

 
Algorithm 2.1. Brute force filling of the context. 

 1: function bruteFilling 

 2:   in ctx 

 3:   in attempts 

 4:   for x = 0 ; x < attempts ; x = x + 1 do 

 5:     attr = random % ctx->attributes 

 6:     objc = random % ctx->objects 

 7:     if ctx->setPosition(attr, objc) then 

 8:       return true 

 9:     endif 

10:   done 

11:   return false 

12: endfunction 

 

 First, the “Brute Force Filling” algorithm is responsible for the best performance 

in the context filling. Positions (i, j) in the table are randomly sorted for its possible use. 

Each position must be checked for availability and if it is in accordance with the 

definitions and corollaries described in section 3.1. Cells are continually sorted until an 

able cell position is found or until it reaches a certain number of iteration (in this tool, 

10,000 iterations). If the maximum iterations value is reached, then the algorithm 



  

“Smart Filling” is activated, according to Algorithm 2. Although Algorithm 2.1 has 

lower overhead in the filling process, it can hardly converge to the maximum density. 

This is due to the low likelihood of sorting a free usable cell – it decreases as the density 

increases. This algorithm has another disadvantage. It cannot determine when there are 

no more usable cells on the context. 

 
Algorithm 2.2: Smart Filling of the context. 

 1: function smartFilling 

 2:   in ctx 

 3:   list<Object> objc = ctx->allObjects() 

 4:   while objc->size > 0 do 

 5:     objc_pos = random % objcs->size 

 6:     objc = objs->removeElement(objc_pos) 

 7:     list<Attribute> attrs = obj->unsettedAttributes() 

 8:     while atrrs->size > 0 do 

 9:       attr_pos = random % atrs->tamanho 

10:       attr = attrs->removeElemento(attr_pos) 

11:       if ctx->setPosition(attr->pos, objc->pos) then 

12:         return true 

13:       endif 

14:     done 

15:   done 

16:   return false 

17: endfunction 

 

 Algorithm 2.2, as previously mentioned, allows a smarter filling on the context, 

while still maintaining its randomness. A list containing all objects in the context is 

created where objects are being sorted and removed from it. For each object removed 

from the list, another list is created that holds unmarked attributes for that object. Again, 

attributes are being sorted and removed from that list forming the context cells position, 

par(attribute, object). The assembled par is submitted for marking by the setPosition 

function. 

 Due to the restrictions imposed during the filling process, one selected density 

value may never be reached. There are situations where there are no possible markings 

to increase the contexts density, requiring a forced algorithm interrupt. These situations 

happen only for density values near the maximum. For that reason, the achieved density 

is then considered the maximum for that context. 

3.3. Synthetic Context Generation Analysis 

In this section, the computational time required to generate the context for the four 

scenarios proposed before is presented. Three density values, for each combination of 

attributes and object, were considered: Dmin, D50% and Dmax. Besides for many-valued 

contexts, that has a single fixed density. The simulations were made on a Pentium IV 

3.06 GHz with HT 2Gb of memory. The simulation results are presented in Tables 9, 

10, 11 and 12. 

 



  

Table 9. Simulation for Contexts |G|=|M|. 

Attributes Objects 
Time (s) 

for Dmin 

Time (s) 

for D50% 

Time (s) 

for Dmax 

100 100 0.00 0.03 0.06 

500 500 0.01 2.67 5.53 

1000 1000 0.05 20.97 42.79 

2000 2000 0.23 169.18 342.29 

3000 3000 0.87 635.24 1297.00 

4000 4000 2.34 1449.41 3065.49 

5000 5000 4.54 4856.03 9401.58 

Table 10. Simulation for Contexts |G|<|M|. 

Attributes Objects 
Time (s) 

for Dmin 

Time (s) 

for D50% 

Time (s) 

for Dmax 

100 50 0.00 0.01 0.02 

500 250 0.01 0.67 1.43 

1000 500 0.01 5.28 10.97 

2000 1000 0.04 42.41 86.42 

3000 1500 0.10 145.42 291.14 

4000 2000 0.20 343.58 700.92 

5000 2500 0.38 698.32 1453.11 

Table 11. Simulation for Contexts |G|>|M|. 

Attributes Objects 
Time (s) 

for Dmin 

Time (s) 

for D50% 

Time (s) 

for Dmax 

100 200 0.01 0.09 0.19 

500 1000 0.08 10.59 21.58 

1000 2000 0.43 84.41 170.23 

2000 4000 2.61 988.73 2112.53 

3000 6000 12.03 6001.92 12780.21 

4000 8000 28.95 17732.17 35577.00 

5000 10000 47.10 37028.39 72686.15 

Table 12. Simulation for Many-Valued Contexts 

Attributes Attribute-Values Objects Density (%) Time (s) 

10 10 10000 10.00 2.14 

10 20 10000 5.00 2.23 

10 30 10000 3.33 2.43 

10 40 10000 2.50 2.51 

10 50 10000 2.00 2.93 



  

 The algorithms have had an exponential time for each type of context 

considered. The density values have a direct impact on the computational time. The 

higher the density value, the higher will be the necessary time to create the context. 

Contexts with lower density value, such as the many-valued one, have a better overall 

performance. 

 It is important to notice that contexts with high number of objects tend to have 

the worst performance. Because of Definition 1, each object must be compared with the 

others on the context to ensure no duplicity. Thus, as the number of objects grows, the 

comparisons between those objects grow exponentially. 

4. Case Study 
To demonstrate the feasibility of the SCGaz as a tool for synthetic contexts generation, 

two different algorithms were evaluated: Object Intersections, discussed in [1] and its 

dual version, Attribute Intersections. They were both evaluated over three different types 

of contexts and with densities ranging from lower to higher values. It is noteworthy that 

both use the incremental intersections strategy to compute the formal concepts. 

 Those two algorithms have a disadvantage because they fail to prevent the 

calculations of concepts already computed previously. A newly obtained concept must 

be verified in relation to duplication before it can be added to the concepts list. 

Therefore, to improve the search for concepts on that list, a hash table has been used, 

implemented with collisions resolved by linked lists. In such cases, the complexity 

related to the Attribute Intersections and Object Intersections algorithms is respectively: 

O(|M||C||K|) and O(|G||C||K|). Where C is the list containing all concepts and K is the 

sub-lists of |C| that are dependent on the hash function used. Thus, 1 <= |K| <= |C|, 

where K should be ideally one (1).  

 With the purpose of simplicity, only 3 types of contexts have been considered in 

the evaluation: |G|>|M|, |G|<|M| and |G|=|M|. The algorithms have been implemented 

in C++ and both share the same software structure, including the same derivation 

operator and hash function. In the experiments, densities have been selected ranging 

from 10% to 90%. For each density value, one hundred (100) random contexts have 

been generated. The average, minimum and maximum execution times related to each 

algorithm are showed in Figures 2, 3 and 4. The simulations have been performed on a 

Pentium IV 3.06 GHz with HT 2Gb of memory. 

 
(a) Average times. 

 
(b) Minimum and maximum times. 

Fig 2. Attribute and Object Intersection for contexts |G|>|M|, where |G|=40 and |M|=20. 



  

 In contexts where |G|>|M|, the Attribute Intersections algorithm has had a better 

performance, Figure 2(a). For densities below 60%, the computations of all concepts 

have spent approximately 1 second for both algorithms. However, in higher densities, 

the number of concepts generated has increased and therefore the number of 

intersections needed has increased, resulting in a higher computational time cost.  In 

these situations, a great discrepancy between the two algorithms can be seen. 

 According to the algorithms complexity, it is expected that the Object 

Intersection algorithm presents a worse performance for context with more objects than 

attributes, Figure 2(a). However, it is observed in Figure 2(b) that the algorithm in some 

occasions has had better results compared with its dual version. But as noted, this only 

occurs for fewer of the contexts evaluated. 

 
(a) Average times. 

 
(b) Minimum and maximum times. 

Fig. 3. Attribute and Object Intersection for contexts |G|<|M|, where |G|=20 and |M|=40. 

 Figure 3(a) shows the expected behavior for both of the algorithms. In this case, 

the Object Intersections algorithm has been more efficient than its dual version for 

contexts with |G|<|M|. It can be observed experimentally that the algorithms behave 

correctly according to their order of complexity. Again, there were contexts where the 

Attribute Intersections algorithm has a better performance, Figure 3(b), over its dual 

version, but in general, the use of the Object Intersections algorithm is more adequate. 

 
(a) Average times. 

 
(b) Minimum and maximum times. 

Fig. 4. Attribute and Object Intersection for contexts |G|=|M|, where |G|=25 and |M|=25. 

 



  

 The last experiment has considered contexts in which |G|=|M|. This time, both 

algorithms have the same order of complexity. Thus, their average execution time is 

extremely similar, as verified in Figure 4a. For the minimum and maximum times, there 

is a certain different between them, as seen in Figure 4b. Considering the maximum 

time limit, the Object Intersections algorithm has had a better performance. Considering 

the minimum time limit, the Attribute Intersections algorithm has been slightly more 

efficient. Choosing the best algorithm to be applied in these situations is a difficult task. 

The implementation of both becomes very sensitive to the context incidents, rather than 

the number of attributes and objects. 

 Through simulations, it is possible to conclude that the Attribute Intersections 

algorithm should be used when context has |G|>|M|. The Object Intersections algorithm 

should be used when |G|<|M|. When |G|=|M|, choosing the most efficient algorithm 

becomes a more difficult task, since both have practically the same behaviour. This 

choice, for this last type of context, should be driven based on the progression of the 

concepts added to the list. Unfortunately, to previously determine in which progression 

the concepts are added to the list depends on how the incidences are distributed in the 

context. Heuristics must be created, applied to contexts, which could help identifying in 

advance some algorithm execution tendency.  Efforts in this sense must be taken to 

select which of those two algorithms should be applied to contexts |G|=|M|. The analysis 

regarding these algorithms was possible thanks to a contexts generation environment, 

which permits the evaluation of them in especial conditions such as the density.  

5. Conclusion 

 This work presents a set of strategies used to create a simulation environment to 

generate partially irreducible contexts while controlling their density values. An analysis 

of computational time spent to create different contexts has been provided. It has been 

verified the possibility to create contexts in a reasonable computational time, even for 

large contexts. This work embraces Kuznetsov (2004) proposal to count on randomly 

generate formal contexts as testbeds to evaluate FCA algorithms. In this work, a new 

tool, SCGaz, is conceived to generate partially irreducible formal contexts. 

 Another way to create irreducible contexts consists in generating randomly 

uncontrolled formal contexts (considering or not a density value) to be latter applied to a 

context reduction algorithm. However, if applied, the density will be calculated a 

posteriori, losing control over the simulations environments. The reduction will also 

affect the amount of both attributes and objects, thus creating an unpredictable behavior 

of the resulting context. Therefore, the main advantage of the SCGaz is to create 

partially irreducible contexts with the amount of attributes, objects and density defined 

before its creation, i.e. a priori. Because of that, a more effective control over the 

simulations and analysis can be done. 

 Another important aspect of this work is not to consider fully irreducible 

contexts. Some of the objects and attributes that could be removed from a context may 

be truly meaningful to a specific application study. Once removed, those objects and 

attributes cannot be recovered from the built conceptual lattice. 

 



  

 As a case study, it has been used contexts generated by the SCGaz tool to 

evaluate two algorithms used to extract concepts: Object Intersections and Attribute 

Intersections. Through the use of this tool, it was possible to evaluate intervals of 

performance for both algorithms. As a result, it has been shown that the best algorithm 

to be applied must be selected based on the context features, such as objects, attributes 

and density.  

6. Future Work 

If new restrictions are imposed to the context, then these contexts could be considered 

irreducible. If two or more attributes have the same implication set (identical columns), 

then a new restriction could be specified. They could be reduced to a single attribute 

(Definition 2).  

 

Definition 2: If   m, n  M such that m' = n' then m = n. Accordingly, for any g, h  

G, g' = h' implies in g = h. The context is therefore called clarified. Thus m or n can be 

reducible.  

 

As mentioned before, the ConExp tool [3] uses another reducing strategy that still 

maintains the lattice structure. If an intersection between any objects result in another 

object present in the context, this one could be removed (Corollary 6). The same 

applies for attributes (Corollary 5).  

 

Corollary 5: Considering m  M and  n,o  M, such that n  o = m for m  n  o, 

then m attribute reducible.  

 

Corollary 6: Considering  g  G and  h,i  G, such that h  i = g for g  h  i, then 

g is object reducible. 
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