Handling Large Formal Context Using BDD —
Perspectives and Limitations

Andrei Rimsa, Luis E. Zarate, Mark A. J. Song

Department of Computer Science, Applied Computaltibrielligence Laboratory
Pontifical Catholic University of Minas Gerais - Biia
rimsa@live.com, {zarate, song}@pucminas.br

Abstract. This paper presents Binary Decision Diagrams (BDa)lied to
Formal Concept Analysis (FCA). The aim is to incretee FCA capability to
handle large formal contexts. The main idea isfwesent formal context using
BDDs for later extraction of the set of all formancepts from this implicit
representation. BDDs have been evaluated basedverakéypes of randomly
generated synthetic contexts and on density vanatin two distinct occasions:
(1) computational resources required to build tvenfil contexts in BDD; and
(2) to extract all concepts from it. Although BDDavie had fewer advantages
in terms of memory consumption for representingnfar contexts, it has true
potential when all concepts are extracted. In wosk, it is shown that BDDs
could be used to deal with large formal contexiseemlly when those have
few attributes and many objects. To overcome tmeitdtions of having
contexts with fewer attributes, one could considertical partitions of the
context to be used with distributed FCA algorithraséx on BDDs.

Keywords: Formal Concept Analysis, Formal Context, Formal Cotcep
Binary Decision Diagrams.

1 Introduction

At the International Conference on Formal Concepalgsis in Dresden (ICFCA
2006) an open problem of "Handling large contextgls pointed out and as an
example was cited the challenge of "how to caleddginerate all concepts of a large
context" (e.g. 120,000 x 70,000 objects attributés)these cases, traditional FCA
algorithms have high computational cost and dentsagd execution times, making
the extraction of all concepts infeasible for largentexts.

One possible solution to deal with the problem aridiing large formal contexts is
to apply a distributed solution for the processofgcontexts. Partial concepts are
obtained for later merging through a specific opmréo find the final set of concepts.
Several authors have presented formal proposalsnattiematical formalisms for
distributed application of FCA, as can be seerli3]] However, these contributions
do not analyze the performance aspects of theildigtd version concerning the
density impact on the context.

It is clear the potential of FCA to represent amxtract knowledge from a set of
objects and attributes and it is even more cleaptioblem of dealing with databases
of high dimensionality. Application in real problemoften suffers from this common
fact. In this work, an approach to meet the chgementioned above consists in
applying Binary Decision Diagrams [4] to obtainyanbolic representation of a cross
table (formal context) that allows a more efficiemtraction of the set of all concepts.
It will be shown that this approach is promisingl dhat it can handle more efficiently
with large contexts when compared with the conesati implementation of
algorithms that handles tablealthough BDD suffers from limitations of handling
contexts with many attributes, a common problenedalby FCA, it can handle huge
amount of objects, making it thus reliable for sose¢ of problems. Also, in these
conditions, the BDD representation presents contiput improvements. In some
cases it can even save days of processing, ab itenlater addressed.

BDD has already been used earlier in FCA. In [Hing previously obtained
concepts, a concept lattice is built based on ZBQI@so-Suppressed BDDs) [6], a
type of BDD. In this paper, BDD have been appligthwa different aim, to represent
formal contexts in order to improve concepts corapoih. This article presents an
analysis of this new representation, both in itpaat in memory consumption as the
computational time required to execute an algorithrextract all concepts.

This article is organized in five sections. In 8econd section, the main concepts
of the FCA and BDD are reviewed. In the third sattiexamining the representation
of formal contexts through BDD is discussed. Infingrth section, the principles and
algorithm for extraction of formal concepts from BDare presented. In the last
section, the conclusions and future works are pdiott.

2 Formal Context

2.1 Formal Concept Analysis

Formal Context. Formal contexts have the notatiin=(G, M, I), whereG is a set of
objects (rows headerd} is a set of attributes (columns headers) laiscan incidence
relation (/7G xM). If an objectg 00 G and an attributen 0 M are in the relatiot, it
is represented by(n) 01 orgimand is read adtie object g has the attributé’m
Given a set of objecta [0 G from a formal contexK:=(G, M, I), it could be asked
which attributes fronM are common to all those objects. Similarly, it ldooe asked,
for a setB O M, which objects have the attributes fr@nThese questions define the
derivation operators, which are formally defined as

A= {mOM |gimOg O A} Q)

B ={g 0G| gimOm0B} 2)

A special case of derivate sets occurs when engis/f objects or attribute are
considered to be derivate:

AOG=0= A'=M;B OUOM=0= B':=G 3)

Formal Concept. Formal concepts are pairA,(B), whereA /7 G (called extent) and
B /7 M (called intent). Each element of the extent (af)jbas all the elements of the
intent (attributes) and, consequently, each eleroéthe intent is an attribute of all
objects of the extent. The set of all formal cortseip a formal context has the
notationB(G, M, I). From a cross table representing a formal congdggrithms can
be applied in order to determine its formal consetd its line diagram [7].

2.2 Binary Decision Diagrams

Binary decision diagrams are a canonical representaf boolean formulas [4]. The
BDD is obtained from a binary decision tree by nmggidentical subtrees and
eliminating nodes with identical left and right lgiigs. The resulting structure is a
graph rather than a tree in which nodes and sudtstes are shared.

Formally, a BDD is a directed acyclic graph wittottypes of vertex: non-terminal
and terminal. Each non-terminal verteis labeled byar(v), a distinct variable of the
corresponding boolean formula. Eaclhas at least one incident arc (except the root
vertex). Also, eaclv has two outgoing arcs directed toward two childderft(v),
corresponding to the case wheee(v)=0, andright(v) to the case whenrar(v)=1.

A BDD has two terminal vertices labeled by 0 andehresenting the truth-value
of the formula false and true, respectively. Pegrg truth assignment to the boolean
variables of the formula, there is a correspongiath in the BDD from root to a
terminal vertex. Figure 1 illustrates a BDD for theolean formulda //b) /7 (c [7d)
compared to a Binary Decision Tree for this samméda.

BDDs are an efficient way to represent boolean tdas Often, they provide a
much more concise representation compared to di@itmal representations, such as
conjunctive and disjunctive normal forms. BDDs atgo a canonical representation
for boolean formulas. This means that two booleamélas are logically equivalent
if and only if its BDDs are isomorphic. This propesimplifies the execution of
frequent operations, like checking the equivalesfasvo formulas.

o o

, \ ‘ \ ‘ b
Arogn K
D/Q“ 9‘ go 81 gn n’g% 1"<Q1 1@1 o,/ \

Fig. 1. Binary decision tree and a correspondent BDD forfdhmula (allb) O (c O d).

However, BDD has drawbacks. The most significantelsted to the order in
which variables appear. Given a boolean formula,silze of the corresponding BDD

is highly dependent on the variable ordering. it gaow from linear to exponential
according to the number of variables of the formdia addition, the problem of
choosing a variable order that minimize the BDDes& NP-complete [4]. There are
heuristics to order the BDD variables; some of tlembased on the knowledge over
the problem. A review of some heuristics can beébin [8].

3 Formal Contexts Represented in BDD

3.1 BDD Construction from Formal Contexts

As mentioned, BDD is able to represent logical eszpions through simplified

graphs. In this way, a context can be convertenl amt equivalent logic formula to be
used in the creation of the BDD representation & atshows an example of a formal
context and its possible representation througigi ffunction.

Table 1.Formal Context Example

& | & | &
X T f(a,8,,8) = 83,8, + 8,3, +aa,a, @)
03 X

Note that each object is represented by a logiatimuy according to the presence
or not of its attributes. The functida;, a, a) results in a positive state (1) when an
object is present on the context. This functionnet the negative state (0) for objects
not present in the context. Thus, any context @arepresented by a logic function.

Al gorithm 1. BDD construction based on the context.

in: List<Ooject> list
out: BDD cont ext
1. context = bddfal se
2: while !l'list.enpty() do
3: obj = list.renpbveFirstoject();
4: BDD tnmp = bddtrue
5: for i=0; i<obj.attributes; i++ do
6: if obj.hasAttribute(i) then
7: tnp &= bdd_ithvar (i)
8: el se
9: tnp &= bdd_nithvar (i)
10: endi f
11: done
12: context |=tnp
13: done

Algorithm 1 allows the construction of BDD basedtbe objects presented in the
formal context. Note that this algorithm maintathe same attribute order of the

formal context in order to build the context in BDDhe internal functions
bdd_ithvarand bdd_nithvarare specific to thduDDy [9] library and are used to
define the presence or not of an attribute in tHeDB respectively. Once the
conjunction of attributes is made, forming the abje(lines 7 and 9), then a
disjunction of those objects is realized (line 12).

It is important to emphasize that the main objectdf this work is to show the
feasibility of BDD to represent formal contextsdainom that representation extract
the formal concepts. The feasibility is shown tlglothe manipulation of large formal
contexts. In most cases the BDD representationess Imemory efficient when
compared to a bit table representation of the ctsiteas will be seen in the next
section. But the memory consumption is not sigaific enough to invalidate its
representation in BDD. So the BDD can be used tmaexconcepts more efficiently
than the algorithms that work directly in the tabulepresentation.

3.2 BDD Representativeness Analysis

To achieve a more reliable simulation environmahtcontext used in this work were
built by the SCGaz tool (available at http://mwLucminas.br/projetos/licap) to
evaluate the BDD performance. This tool can rangiageherate formal contexts with
user-defined densities while avoiding the existeméesome type of redundant
attributes and objects. The use of partially digifcontexts was considered in this
work to guarantee that the final size of the BDPresentation is not influenced by
the existence of repeated objects and attribuitese $his representation can internally
simplify these redundancies. This is an importaelp sto ensure fairness of the
representation that could otherwise be used to rttaskrue performance of BDD.
Note that the BDD representation is not restridizctlarified contexts and can be
applied to any type of context, regardless ofrifsrimation redundancy.

To construct and operate the BDD, tBaDDy library was used in which each
node of its graph is represented by 20 bytes. Ttmasnumber of nodes in the graph
was the parameter used to quantify the representatemory consumption. In order
to compare the BDD representativeness, a relatipristtween the bit table memory
consumption was stipulated. Whegg,. andS,qq correspond respectively to the table
and BDD memory sizes. This metric calculates tha ¢@ain) of a representation in
relation to another.Thus, when the BDD consumes less memory than thiatilie,
equation (5) is then used. When the bit table isenefficient, the expression of
equation (6) is therefore used. The negative sigticates the loss of the BDD
compared to the bit table memory consumption.

Gain= (ﬂj (5) Gain= —(hj (6)

dd able

Note that the number of nodes in the BDD is noatesl to the number of filled
cells of the context. Contexts with the same dgrasid filled cells can present BDDs
with more or less nodes.

To assess the representativeness of contexts thidD@, it is considered their
behavior over different types of conteXG|=|M|, |G|<|M|, |G|>|M| and many-

valued. For each type of context considered, a (adiribute, object) was simulated
for 10 cases of density, ranging from its minimumits maximum value. For the
types of contexts with unique densities (many-val@nd contextdG|>|M| with
|G|=2M' - 3, a single simulation was performed. The implemtobs were made in
C++ and the simulations were realized on a PentM3.06Ghz HT with 2GB of
RAM running Slackware Linux 12.0.

Contexts |G| = |[M|.Table 2 and Figure 2 correspond to the representafi contexts
through BDD, where the number of objects is eqodhe number of attributes. Table
2 shows the minimum, maximum, and the median vafoesthe BDD memory
consumption %,49), as well as the required time to build the BDD}y§) and the
representativeness gain compared to the bit t&lideire 2 shows the gains obtained
for the cases (100, 100), (1000, 1000) and (50000%in function of the density.

Gain x Density
1G] = M|

{1000, 1000) —3¢—
o (3000, 3000) —%—
{5000, 5000) —e—

Gain

o 10 20 El 0 50 60 0 a0 %0 160
Density (%)

Fig. 2.BDD gain for context$G| = |M|.

Table 2.BDD simulation for contextiG| = |M|.

Gl M Sable i Smdl(Kb) . Todd (?) . Gain i
(Kb) | Min | Median| Max Min Median Max Min Media Ma
50 50 0 2 36 39 0.01 0.02 0.03| -128.21| -117.18| -6.35
100| 100 1 4 163 172 0.08 0.22 0.25| -140.64| -133.51| -3.18
300| 300| 11| 12 1636| 1669 3.27 9.06 9.18| -151.87| -148.94| -1.06

500| 500| 31| 20 4660| 4718 18.19 47.53 49.93| -154.60| -152.69| 1.56
1000| 1000| 122| 39| 19038| 19163| 362.66| 661.04] 786.00| -156.98| -155.96| 3.13
1500| 1500 275| 59| 43157| 43357| 1217.48| 2435.05| 2585.38| -157.86| -157.13| 4.69
2000| 2000| 488| 78| 77029| 77310 3013.76] 5959.37| 6059.72| -158.33| -157.76] 6.25
2500| 2500| 763| 98| 120662| 121019 5728.60(11723.10| 12051.70] -158.62| -158.15| 7.81
3000 3000| 1099| 117 | 174050| 174493| 7252.94| 14696.80| 14829.50| -158.83| -158.42| 9.38
3500 3500| 1495| 137 | 237203| 237718| 11450.90| 23694.70| 23907.90| -158.97| -158.63| 10.94
40001 4000| 1953| 156 | 310110| 310708| 17159.50| 35908.95| 36225.80| -159.08| -158.78| 12.50
4500 4500| 2472 | 176 | 392771| 393462| 24577.30| 52143.25| 52561.80| -159.17| -158.89| 14.06
5000 5000| 3052| 195 | 485201| 485977| 34321.40| 73011.15| 73679.80] -159.25| -158.99| 15.63

As expected, BDD obtained a better performanceoin hnd high densities
(approximately below 10% and above 90%) when cosp#r intermediate densities.
This occurs because with few or many incidencesh& context table, there are
several similarities in the BDD graph that allownplifications of sub-expressions.
The BDD is therefore represented with fewer nodiésanwhile, in the intermediate
densities, the BDD had a constant behaviour. Tagphlns because the BDD is using

few objects compared to the total universe of abjé2), making no influence in the
representation size. The BDD is unable to find ghoobjects similarities that could
allow significant simplification. So, the intermeté density has no effect over the
BDD representative size.

It is noteworthy that, although the BDD has hadwdr performance than the bits
table, the representation of formal contexts in BBDcomputationally feasible.
Through data collected by the simulations, it isnped out that, for a context with
5,000 attributes and 5,000 objects, the BDD reqguéngpressively more memory than
the bit table representation and was able to huild a viable computational time of
about 20 hours.

Gain x Density
1G] <[M|

(1000, 1000) —%—
o £3000, 3000) —K—
{5000, 5000) —e—

Gain

0 10 20 20 40 50 B0 70 B0 30 100
Density (%)

Fig. 3.BDD gain for context$G| = |M|.

Table 3.BDD simulation for contextiG| < |M|.

G| M| Sable _ Shdd (_Kb) _ Thdd (S) i Gain i

(Kb) | Min | Median Max Min Median Max Min Median Ma
100| 1000| 12 42 1921 1929 25.19 27.68 28.03| -158.05| -157.40| -3.43
600| 1000 73 390| 11444| 11515 151.76| 253.24| 255.87| -157.22| -156.24| -5.33
900| 1000| 110 860| 17140| 17251| 237.00] 419.00| 423.23| -157.02] -156.02| -7.83
200| 2000| 49 82 7739| 7757| 211.45| 286.26| 289.19| -158.87| -158.49| -1.67
1200| 2000| 293| 1612| 46263| 46419| 1318.07| 2475.16| 2498.55| -158.44| -157.91| -5.50
1800| 2000| 439| 3664| 69342| 69589| 2099.88| 3783.11] 3819.29| -158.35| -157.79| -8.34
300 3000| 110 117| 17457| 17489| 725.02| 1267.96] 1276.93| -159.19| -158.90| -1.06
1800| 3000| 659| 3179| 104497| 104745| 4678.94| 8663.08| 8734.99| -158.90| -158.53| -4.82
2700| 3000| 989 | 8648| 156663| 157054| 9454.73| 13168.50 13297.90| -158.84| -158.44| -8.75
400 | 4000| 195 213| 31079| 31124| 1725.56| 3227.89] 3258.88| -159.36] -159.12| -1.09
2400| 4000| 1172| 4969 186152| 186497| 11886.00] 20967.85| 21207.00] -159.15| -158.85| -4.24
3600 4000| 1758 15518| 279119| 279660| 26804.10] 32140.80| 32479.40| -159.10f -158.79| -8.83
500| 5000| 305 273| 48605| 48664| 3403.50| 6507.70| 6564.56| -159.46| -159.27| 1.12
3000| 5000| 1831| 9071 291238| 291674| 30512.60] 42217.25| 42495.30] -159.29| -159.06| -4.95
4500| 5000 2747 | 23234| 436726| 437409| 55495.90| 64979.45| 65884.40| -159.26] -159.01| -8.46

Contexts |G| < |[M|.Table 3 presents the data collected in simulationsettings

where the number of objects is less than the numbattributes. This is considered
the worst situation for the BDD, since there istaalt amount of objects, resulting in
a low probability of finding objects with similarharacteristics. Thus, the BDD is
unable to simplify enough its representation torcome the performance of the bits
table. The representation of the bits table id gdty compact in order to verify a
representativeness gain of the BDD version. A similehavior of Figure 2 can be
observed in Figure 3. In extreme values of derssitibe BDD performance had a

slightly improvement over intermediate densitiesowdver, the gains were not
enough for the memory space consumed by the BDEeseptation suppress the bits
table representation. Again, the bit table repredEm was extremely compact. The
expressive number of attributes increases the Bidplgdepth and requires more
nodes to be represented.

Median Gain x % of 2™
1G] > M|

Vith 12 attributes —X—
Uith 16 attributes —¥—
2.5 Uith 20 attributes —s—

Median Gain

Fig. 4.BDD gain for context$G| = |M|.

Table 4.BDD simulation for contextfs| > |M|.

Gl M| Sable . Enuq (Kb . Todd (?) . GainA
(Kb) | Min Median | Max Min Median Max Min Media| Max
102 10 0 1 2 3 0.00 0.00 0.00| -22.52| -20.08| -10.87
613 10 1 2 4 5 0.01 0.01 0.01 -6.16 -5.56 -2.27
920 10 1 1 3 3 0.01 0.01 0.01| -2.42| -2.23| -1.15
409 12 1 3 8 8 0.00 0.01 0.01| -14.03| -12.85 -5.55
2457 12 4 3 13 14 0.03 0.03 0.03| -3.88] -3.66 1.08
3685 12 5 4 8 8 0.04 0.04 0.04| -1.53| -1.41 1.53
1638 14 3 7 24 27 0.02 0.02 0.03 -9.57 -8.73 -2.46
9829 14 17 6 42 45 0.13 0.13 0.14| -2.66| -2.52 2.82
14744 14 25 7 24 27 0.19 0.20 0.21 -1.05 1.04 3.49
6553 16 13 13 80 88 0.10 0.12 0.13 -6.90 -6.25 -1.01
39321 16 77 10 145| 160 0.77 0.78 0.92| -2.08] -1.89 7.90
58981 16| 115 13 80 88 1.19 1.21 1.22 1.31 1.44 8.96
26214| 18 58 66 271| 298 0.61 0.71 0.77| -5.18| -470| -1.14
157285 18| 346| 55 515| 582 4.70 4.97 5.01| -1.68| -1.49 6.25
235928 18| 518 65 270| 298 7.32 7.37 7.39 1.74 1.92 7.93
104857 20| 256| 248 938 1033 3.71 4.54 4.79| -4.03| -3.66 1.03
629145 20| 1536| 225 1759| 1962| 28.09 30.13| 43.25 -1.28 -1.15 6.84
943717 20| 2304| 267 936| 1034 39.58 40.26| 40.33 2.23 2.46 8.62

Contexts |G| > |M|.The data shown in Table 4 reflects the simulati@adized with a
wider number of objects than attributes. For egple bf context, the selected amount
of objects was 10%, 60% and 90% of the maximum resrobobjects possible 9.

It is noticed by Figure 4 that the gains and lossere not significant when a large
amount of objects are used. The more the numbebjefcts cover the total objects
universe of possibilities), better will be the BDD representativeness. Thithe
case when 90% of the maximum number of objectsésluAlso, BDD presented a
stable behavior with fewer variations in the minfmumedian and maximum gain for
this type of context. With fewer attributes and manbjects, BDD may become an
attractive alternative to express data containextass tables. Also, the computational

time required to assemble the BDD graph is notnditiig factor, allowing the
construction of a BDD with 943,717 objects in tine@sund 40 seconds. However,
this situation is only reflected in context withafattributes. Increase the amount of
attributes in the BDD has serious consequencds size.

Many-Valued Contexts. Table 5 shows the data collected for many-valustexts
concerning attributes ranging from 1 to 5, whereheattribute was simulated with 5,
10 and 15 intervals of discretization. All contemted in these simulations have only
one incidence per attribute, i.e. only one attébwalue by attribute. The amount of
objects considered in the simulations is shownigutfe 5 along with the considered
density. As it can be seen through Table 5, isiplesso assemble a BDD context
with more than 700,000 objects in approximatelyniiButes. The gains obtained in
the data presented in Table 5 show that BDD hasisfactory memory performance
for this type of context. The density of this typfecontext is naturally lower, allowing
the BDD representation to find more simplificatiomsd be represented in a more
compact form.

Gain x Many-valued Attributes
Many-valued Contexts

5 attributes per nany-valued attribute —X—
2950 | 10 attributes per nanu-valued attribute —K—
15 attributes per nan-valued attr ibute ——

Gain

1 2 4 5

3
Many-valued Attributes

Fig. 5.BDD gain for many-valued contexts.

Table 5.BDD simulation for many-valued contexts.

[GI=M" T M| V[| IMIVI| Den | Saeia(Kb) [Spaa (Kb) | Tosa (S) Gain
5 1 5 5| 20% 0 0 0.00 -60.00
25 2 5 10| 20% 0 0 0.00 -11.61
125 3 5 15| 20% 0 0 0.00 -2.31
625 4 5 20| 20% 1 0 0.01 2.17
3125 5 5 25| 20% 10 0 0.08 10.85
10 1 10 10| 10% 0 0 0.00 -31.67
100 2 10 20| 10% 0 0 0.00 -3.04
1000 3 10 30| 10% 4 1 0.04 3.29
10000 4 10 40| 10% 49 1 0.72 32.89
100000 5 10 50| 10% 610 2 24.86 328.95
15 1 15 15| 6% 0 0 0.00 -20.71
225 2 15 30| 6% 0 1 0.01 -1.38
3375 3 15 45| 6% 19 2 0.26 10.91
50625 4 15 60| 6% 371 2 17.54 163.66
759375 5 15 75| 6% 6952 3| 759.04| 2454.88

This section presented the assessment of BDD aspresentation of formal
contexts. It was observed that the BDD has a satisfy performance only on

context with fewer attributes and a large amoundlgjécts, i.e., when the number of
objects covers much of the maximum number of objepbssible ().
Unfortunately, to achieve this exorbitant amounbbfects, the number of attributes
must be very small. Moreover, as mentioned, théopaance of BDD deteriorates as
the number of attributes increases. As the levelegith in the BDD graph increases,
less simplification are found to reduce its sizbe Tconstruction of the BDD is also
affected when the time for its assembly grows eeptially when more attributes are
expressed in the context. In addition, better testdn be obtained in contexts with
densities closer to the minimum and maximum vatbas in intermediate values.

It is important to emphasize that the FCA derivatiperator, necessary to obtain
the formal concepts, is applied on the context essed in BDD. Therefore, the more
satisfactory is the performance of BDD, smallerlvidé the computational time
required to operate it. For this reason, the cotscegtraction should take advantage
of this situation.

4 Formal Concepts Extraction using BDD

4.1 Concept Extraction Algorithm Implementation Ushg BDD

In order to use a BDD representation of formal egfjtalgorithms to extract concepts
and/or to construct the concept lattice availahlghe literature must be adapted to
handle this new form of representation. To dematestthe feasibility of BDD, the
adapted algorithm was the Attribute Intersectiol®).[Note that the purpose of this
paper is to evaluate the feasibility of BDD and itetmost efficient implementation
over several others algorithms.

The implementation of the Attribute Intersectiogaithm in BDD was divided in
three primary stages (Fig. 6). In the first stabe, construction of the formal context
in BDD is made (Algorithm 1). The second stageesponsible to extract the set of all
concepts from the BDD context. In the final staijeis necessary to identify the
attributes and objects from the concepts repredentBDD.

Find the Set of Intent and
Extent in Concepts
Represented in BDD

Formal Context Extract the Set of

Construction in BDD All Concepts in BDD

Fig. 6. Steps to implement the Attribute Intersection athon in BDD.

Extracting the Set of All Concepts in BDD.Algorithm 2 is the kernel of the
Attribute Intersection algorithm, but slightly méidd to work with BDD. This
implementation in BDD takes advantage of two dtimoments when the derivation
operator is used (Line 4) and the intersection betwtwo concepts is made (Line 8).
The derivation operator is easily implemented thiouhe implicit bdd_ithvar
operator, which obtains a BDD representation obbjects that has an attribute. The

intersection between two concepts is also impleaeterihrough an implicit BDD
operation. In this case, the conjunction operaaepresented in the algorithm as “&”
but implemented a®dd_and Moreover, the concepts list in this algorithm was
implemented as a Hash to achieve a faster veiditaf concepts duplicity.

Al gorithm 2. BDD construction based on the context.

in: BDD context
out: List<BDD> concepts

1: concepts = new LI st <BDD>

2: concepts. addConcept (cont ext)

3: for i=0; i<attributes; i++ do

4: BDD tmpl = context & bdd_ithvar(i)
5: size = concepts. size()

6: for j=0; j<size; j++ do

7: BDD t mp2 = concepts. get Concept (j)
8: BDD intersection = tnpl & tnp2

9: if lconcepts.exist(intersection) then
10: concepts. add(i ntersection)
11: endi f
12: done
13: done

Unfortunately, storing all the concepts as BDDha tist reflects a very expressive
memory consumption. The algorithm was slightly nfiedi to save the concept intent
(B;) rather than the concepi(B) in BDD. From the intent seB(), one can rebuild
the concept in BDD through the formal context, #figr maintaining the essence of
the proposed Algorithm 2.

Finding the Set of Intent and Extent in Concepts Rgresented in BDD. This
section shows how to obtain the extent and intérthese concepts represented in
BDD. Algorithm 3 is used to check if all objectgpresented by the BDD share a
common attribute. Algorithm 4 is used to verify s or not an object is present in
the BDD.

Algorithm 3. Verify the presence of an attribute in a
concept represented in BDD

in: BDD concept, attr
out: presence

1. BDD tnmp = concept & bdd_ithvar(attr)
2: if tnmp == concept then

3: present = true

4: el se

5: present = fal se

6: endif

For the extraction of all objects (extent) of tlmmcept, Algorithm 4 can be used to
verify if each object that exists in the formal text is present in the concept. The
same can be applied to the set of attributes tihtdmwough Algorithm 3, covering all
formal context attributes checking whether or nwyt are present in the concept
represented in BDD.

Algorithm4. Verify the presence of an object in a concept
represented i n BDD

in: BDD concept, objc
out: presence

1: BDD tnp = concept

2: for i=0; i<objc.attributes; i++ do
3: if tnp == bddtrue then

4: presence = true

5: return

6: else if tnp == bddfal se then
7: presence = fal se

8: return

9: endi f

10: if bdd_varlevel (tnp) == i then
11: if obj.hasAttribute(i) then
12: tnp = bdd_hi gh(tnp)

13: el se

14: tnp = bdd_| ow(t np)

15: endi f

16: endi f

17: done

18: presence =(tnp == bddtrue)

4.2. Feasibility Analysis of BDD to Extract Concep

One of the requirements to assess the represartasis of BDD to extract concepts
was to compare its performance under the same ttmmslias its tabular version. For
this reason, it was decided to implement a unigigerighm for both situations:
contexts represented by BDD and by a table. Asipusly mentioned, the algorithm
selected was the Attribute Intersections. This rdlgm choice was driven by its
inherent characteristics that allow a more effadfivconcepts extraction from
contexts where the number of objects is superithaaattributes.

To create a more reliable simulation environmenthbversions of the algorithm
were constructed sharing the same types of stesegihe BDD version was
constructed according to the diagram in Figure Bjlewthe tabular version was
constructed with several optimizations. Both ofntheses a list that holds concepts
intent as a hash-table and shares the same hasfiofuriThe BDD version has an
intrinsically feature that, when there is an inéet®n between two other concepts,
the result is already a concept; while in the tabwiersion it is necessary to further
use derivation operators to acquire the concept.o¥ercome this problem, the
concept is obtained only after the verificationifots intent is not present in the list
yet. Thus, the tabular version of the algorithm idsounnecessary derivation
operations and maintains similarity to the BDD i@ms Another feature was the
implementation in the conventional version of thgodthm: the derivation operator
uses a data structure similar toBéSet The efficiency of the operators becomes
superior by decreasing the amount of comparisohsdas two sub-sets of concept
extents. In this sense, various enhancements aahexd more rapid extraction of
concepts in order to achieve a more effective caoispa of the BDD viability.

Another difference between the two versions evallias related to how each of
them carries out their intersections. The BDD \@rsperforms the intersection

between concepts represented in BDD through thdidinpdd_andoperator, while
the tabular version performs the intersection betweghe previously computed
concepts extents. After that step, both algoritimsst identify the concepts intent.
The BDD version takes advantage of this situatieaalnse of its extremely efficient
bdd_ithvaroperator, but looses in performance in stage 3@fdiagram in Figure 6.
The table version is not affected by this probléntes it obtains the concept intent
and extent through the derivation operators. Tleseral simulation scenarios are
necessary to evaluate the algorithm behavior oifarent conditions.

Figure 7 shows the behavior of the Attribute Inteteons algorithm for the BDD
and tabular version for contexts with fewer atttédsu(20 to 100) and many objects
(10,000 to 60,000). This algorithm has better penfnce for contextfs|>|M|. To
ensure that the BDD graph would not be extremeipmact, the used density for all
contexts was the minimum plus 10% of it. Moreovewer density values result into
smaller amounts of concepts, thus making the simuls consume less time to
execute. All simulations were realized on a Pentidmal Core 2.66Ghz with 2Gb of
RAM running Linux Slackware Linux 12.0. The implemtations for both versions of
the Attribute Intersections algorithm were impleteghin C++.

Time x Attributes Time x Attributes
|Gl=10000 |G|=20000
0 2490
Table —%— Table ——
00—) —%—
600 1800
500 1500
@ 400 @ 1200
o o
13 13
00 £ 90
20 600
100 300
0 0
20 30 40 50 B0 70 80 80 100 20 20 40 50 B0 70 B0 80 100
M) M|
(a) Contexts with |G|=10000 (b) Contexts with |GB@0
Time x Attributes Time x Attributes
|G|=30000 |G|=40000
2200
Table —%—
2000 BID —%— 4760
4420
2700 4080
2400 3740
3400
2100
. . 3080
&2 1800 & oo
@ @
E 150 E 20
F F o
1200
1700
%0 1380
500 1020
680,
200: Table —%—
240 BID —%—
0 0
20 30 40 50 60 70 80 30 100 20 30 40 50 60 70 80 30 100
Ml Ml

(c) Contexts with |G|=30000 (d) Contexts with |G8d0

Time x Attributes Time x Attributes

|G|=50000 |G|=60000
8500 12000
Table —%— Table —%—
7650 EDD —%— 10800 BID —%—
BB00 9600
5350 8400
o~ 5100 o 7200
& a8
@ 4250 @ B0
E E
L") L)
2550 3600
1700 2400
850; 1200
0 20 30 40 50 B 0 80 a0 100 0 20 40 50 6O 0 80 a0 100
Ih M
(e) Contexts with |G|=50000 (f) Contexts with |®660

Fig. 7. Evaluation of Attribute Intersections implementedaatable and BDD.

As it can be seen in Figure 7, the implementatibthe algorithm in BDD had an
exponential performance in all the simulations, levhthe tabular version has
presented an irregular decreasing behavior. Fortdhke version, the density can
explain the decreasing behavior, since lower atteib value had higher density for
these considered simulations. In addition to thaty the incidences are spread into
the context can explain its irregular behavior f&#nt contexts with the same density
may have different execution performance. On theemotand, the BDD version
presented a stable exponential behavior. Increasiagquantity of attributes in the
context, more nodes will be required to constrhetBDD. Therefore, as more nodes
are used by the BDD, less efficient will be the m@yiens in this representation. Thus,
explaining this uniform behavior. Also, as can leers by simulations of 20 and 30
attributes, while the tabular version had worst etirperformance, this BDD
maintained a very low execution time, despite eftigher density. So, the BDD size
is extremely relevant in the computation of all cepts.

Through simulation, it is demonstrated that BDD hdsetter overall performance
than the table version for a number of attributegelr than or equal to 70. Above this
threshold, the BDD graph becomes complex and begiriern into an unattractive
solution. Also, as the amount of objects increagessatest has become the difference
between the execution times of both implementatioossidering attributes up to 70.
Thus, the implicit representation of concepts inBBecomes an alternative to a
more efficient extraction of concepts in these diorks.

Considering now a threshold of 70 attributes, amotsimulation scenario was
created. This time, the number of objects choses based on the ICFCA'06
challenge. A many-valued context was simulated Witkitributes, a fixed number of
10 attribute-values per attribute and 120,000 dbjethe context had a density of
10% and generated 1,172,960 concepts. Table 6rmsetbe spent time consumed by
both algorithm implementations, in BDD and in table

Table 6. Execution time for many-valued context with 7@iatites and 120000 objects.

Construction of Concepts | Intent and Exten
the Context (s) | Extraction (s) | Identification (s) Total (s) Total
Table - - - 251283 | 2d 21:48:03
BDD 128 18345 33289 51762 | 0d 14:22:42

As it can be seen in Table 6, the BDD version oigti@ithe set of all concepts in
less than 15 hours, while the tabular version delmdnalmost three days for its
complete execution. Applicability to process largentexts could be achieved with
the use of a distributed version of an algorithnplamented in BDD. If we consider
that a context with 70,000 attributes and 120,0Bfeas can be divided into sub-
contexts of 70 attributes and 120,000 objectd, s@intaining a low density, then it
would be necessary, in general, 15 thousands @uéire hours. Considering that all
sub-contexts were executed in execution times ardi hours. If a cluster of 50
computers were used, then it would be requiredrat@90 execution hours, about 15
days. It will be still necessary to join the subicepts to form the concepts final set,
but the BDD opens a possibility to process thigdazontexts.

Note that the required time to identify the set eoftents from the concepts
represented in BDD was very significant, as seefdlyle 6. This happens because of
the used algorithm quadratic complexity relativetie number of objects. If more
efficient algorithms were used, lower computatiairakes may be achieved to process
contexts. Instead of a brute force strategy to kchesjects presence in a concept,
another strategy could be visiting BDD nodes idwgimi) the objects, inverted form.

5 Conclusions

The present work is related to a challenge raisaédeal CFCA'06 conference, which
refers to the manipulation of large formal contexthrough the use of an implicit
representation of formal context in BDD, it has medemonstrated that this new
representation became computationally feasiblehfamdling large contexts, when
compared to the conventional manipulation of agabl

In this work, the representation of the formal eot¢ in BDD were evaluated in
two distinct aspects, as the memory consumptiorletion to a bit table and as the
computational time spent in its construction. Isvater assessed the performance of
the algorithm Attribute Intersection adapted toused with BDD compared to the
conventional implementation as a table. It has besmified that the BDD can be
applied to the FCA algorithms to improve the ex@utime required to complete the
extraction of all concepts. Although this repreatinoh allows the manipulation of
contexts with a large number of objects, it isniettd to contexts with few attributes
(up to 70 attributes, as experimentally verifielis is due to the fact that BDD tends
to improve their representation with a larger numbg objects, allowing further
simplifications on its graph and thus making therations on it more efficient. It has
been also realized that the lower the number abates in the context the higher will
be the BDD performance when compared to the coi@aitimplementation of the
algorithm, as verified in Figure 7. Thus, if thentext meets this feature, a significant
efficiency can be achieved with the applicatiortto$ new alternative. This can also
be verified for many-valued contexts in Table 6winich the difference between both
execution times was approximately of 2 days of tammpted processing.

The context density is an aspect that is intimatelgted to the number of concepts
obtained. The concepts extraction using a BDD mepration is still conditioned to
this characteristic. Therefore, all simulations evémited to low densities.

Several future works may be pointed out: Evaluativeyv libraries for BDDs
construction and manipulation, like CUDD [11]; measg the behavior over
different BDD technologies, like ZBDDs; evaluateffglient orders for attributes
(statically or dynamically chosen) to construct 8BD; and adapting others FCA
algorithms that could be used with BDD. ZBDD havieady proven to be
satisfactory for spare contexts [5], but in somgetpf contexts, in our preliminary
results, the standard BDD was able to beat the ZBBifformance. Further analysis is
therefore required. Also, in order to adapt othe@A algorithms a study must be
conducted to verify whenever the BDD can be applied other words, which
algorithm operations can be similarly replaced byBRD operation in order to
increase the algorithms capabilities. For examplethis work, the intersection of
concepts in the Attribute Intersection was impletadnby replacing this function
with a correlated BDD conjunction operator thatt#ed performance improvements.

Although the results presented in this paper haentshown to be satisfactory for
many objects (120,000) and a few attributes (indfer of 70), it is possible to use
the BDD approach in conjunction with distributed A @lgorithms. Thus increasing
processing power of contexts with larger numbeattiibutes while still maintaining
its inherent capability of processing huge amoohtsbjects.

References

1. Li, Y., Liu, Z.T., Shen, X.J., Wu, Q., Qiang,:YTheoretical research on the distributed
construction of concept lattices. International @vefce on Machine Learning and
Cybernetics, 2003 1 (2003) 474-479 Vol.1

2. Liu, Z,, Li, L., Zhang, Q.: Research on a unidgoathm of multiple concept lattices. In:
RSFDGrC, Springer (2003) 533-540

3. Lévy, G., Baklouti, F.: A distributed version tfe ganter algorithm for general galois
lattices. In: CLA 2005. (2005) 207-221

4. Bryant, R.: Graph-based algorithms for boolearction manipulation. IEEE Transactions
on Computers C-35(8) (1986) 677-691

5. Yevtushenko, S.: Computing and Visualizing Condsgitices. PhD thesis, TU Darmstadt,
Fachbereich Informatik (2004)

6. Minato, S.: Zero-suppressed BDDs for set manffmrian combinatorial problems. In: DAC
'93: Proceedings of the 30th International Confezemic Design Automation, New York,
NY, USA, ACM (1993) 272-277

7. Gratzer, G.: General Lattice Theory. BirkhauBaisel (1978)

8. Butler, K.M., Ross, D.E., Kapur, R., Mercer, M.ReUiistics to compute variable orderings
for efficient manipulation of ordered binary deoisidiagrams. In;: DAC'91: Proceedings of
the 28th Conference on ACM/IEEE Design AutomationwNéork, NY, USA, ACM
(1991) 417-420

9. Lind-Nielsen, J.: Buddy: A binary decision diagraTechnical report, Department of
Information Technology, Technical University of Deark, Lyngby, Denmark (1999)
http://www.itu.dk/research/buddy.

10.Carpineto, C., Romano, G.: Concept Data Analysiepfijhand Applications. John Wiley &
Sons, Indianapolis, IN, USA (2004)

11.Somenzi, F.: CUDD: CU decision diagram packageasd (1998)

