
Handling Large Formal Context Using BDD –
Perspectives and Limitations

Andrei Rimsa, Luis E. Zárate, Mark A. J. Song

Department of Computer Science, Applied Computational Intelligence Laboratory

 Pontifical Catholic University of Minas Gerais - Brazil
rimsa@live.com, {zarate, song}@pucminas.br

Abstract. This paper presents Binary Decision Diagrams (BDDs) applied to
Formal Concept Analysis (FCA). The aim is to increase the FCA capability to
handle large formal contexts. The main idea is to represent formal context using
BDDs for later extraction of the set of all formal concepts from this implicit
representation. BDDs have been evaluated based on several types of randomly
generated synthetic contexts and on density variations in two distinct occasions:
(1) computational resources required to build the formal contexts in BDD; and
(2) to extract all concepts from it. Although BDDs have had fewer advantages
in terms of memory consumption for representing formal contexts, it has true
potential when all concepts are extracted. In this work, it is shown that BDDs
could be used to deal with large formal contexts especially when those have
few attributes and many objects. To overcome the limitations of having
contexts with fewer attributes, one could consider vertical partitions of the
context to be used with distributed FCA algorithms based on BDDs.

Keywords: Formal Concept Analysis, Formal Context, Formal Concept,
Binary Decision Diagrams.

1 Introduction

At the International Conference on Formal Concept Analysis in Dresden (ICFCA
2006) an open problem of "Handling large contexts" was pointed out and as an
example was cited the challenge of "how to calculate/generate all concepts of a large
context" (e.g. 120,000 x 70,000 objects attributes). In these cases, traditional FCA
algorithms have high computational cost and demand high execution times, making
the extraction of all concepts infeasible for larger contexts.

One possible solution to deal with the problem of handling large formal contexts is
to apply a distributed solution for the processing of contexts. Partial concepts are
obtained for later merging through a specific operator to find the final set of concepts.
Several authors have presented formal proposals and mathematical formalisms for
distributed application of FCA, as can be seen in [1-3]. However, these contributions
do not analyze the performance aspects of the distributed version concerning the
density impact on the context.

 It is clear the potential of FCA to represent and extract knowledge from a set of
objects and attributes and it is even more clear the problem of dealing with databases
of high dimensionality. Application in real problems often suffers from this common
fact. In this work, an approach to meet the challenge mentioned above consists in
applying Binary Decision Diagrams [4] to obtain a symbolic representation of a cross
table (formal context) that allows a more efficient extraction of the set of all concepts.
It will be shown that this approach is promising and that it can handle more efficiently
with large contexts when compared with the conventional implementation of
algorithms that handles tables. Although BDD suffers from limitations of handling
contexts with many attributes, a common problem faced by FCA, it can handle huge
amount of objects, making it thus reliable for some set of problems. Also, in these
conditions, the BDD representation presents computational improvements. In some
cases it can even save days of processing, as it will be later addressed.

BDD has already been used earlier in FCA. In [5], using previously obtained
concepts, a concept lattice is built based on ZBDDs (Zero-Suppressed BDDs) [6], a
type of BDD. In this paper, BDD have been applied with a different aim, to represent
formal contexts in order to improve concepts computation. This article presents an
analysis of this new representation, both in its impact in memory consumption as the
computational time required to execute an algorithm to extract all concepts.

This article is organized in five sections. In the second section, the main concepts
of the FCA and BDD are reviewed. In the third section, examining the representation
of formal contexts through BDD is discussed. In the fourth section, the principles and
algorithm for extraction of formal concepts from BDD are presented. In the last
section, the conclusions and future works are pointed out.

2 Formal Context

2.1 Formal Concept Analysis

Formal Context. Formal contexts have the notation K:=(G, M, I), where G is a set of
objects (rows headers), M is a set of attributes (columns headers) and I is an incidence
relation (I ⊆ G × M). If an object g ∈ G and an attribute m ∈ M are in the relation I, it
is represented by (g, m) ∈ I or gIm and is read as “the object g has the attribute m”.

Given a set of objects A ⊆ G from a formal context K:=(G, M, I), it could be asked
which attributes from M are common to all those objects. Similarly, it could be asked,
for a set B ⊆ M, which objects have the attributes from B. These questions define the
derivation operators, which are formally defined as:

A’:= {m ∈ M | gIm ∀ g ∈ A} (1)

B’:= {g ∈ G | gIm ∀ m ∈ B} (2)

A special case of derivate sets occurs when empty sets of objects or attribute are
considered to be derivate:

A ⊆ G = Ø ⇒ A’:=M ; B ⊆ M = Ø⇒ B’:=G (3)

Formal Concept. Formal concepts are pairs (A, B), where A ⊆ G (called extent) and
B ⊆ M (called intent). Each element of the extent (object) has all the elements of the
intent (attributes) and, consequently, each element of the intent is an attribute of all
objects of the extent. The set of all formal concepts in a formal context has the
notation B(G, M, I). From a cross table representing a formal context, algorithms can
be applied in order to determine its formal concepts and its line diagram [7].

2.2 Binary Decision Diagrams

Binary decision diagrams are a canonical representation of boolean formulas [4]. The
BDD is obtained from a binary decision tree by merging identical subtrees and
eliminating nodes with identical left and right siblings. The resulting structure is a
graph rather than a tree in which nodes and substructures are shared.

Formally, a BDD is a directed acyclic graph with two types of vertex: non-terminal
and terminal. Each non-terminal vertex v is labeled by var(v), a distinct variable of the
corresponding boolean formula. Each v has at least one incident arc (except the root
vertex). Also, each v has two outgoing arcs directed toward two children: left(v),
corresponding to the case where var(v)=0, and right(v) to the case where var(v)=1.

A BDD has two terminal vertices labeled by 0 and 1, representing the truth-value
of the formula false and true, respectively. For every truth assignment to the boolean
variables of the formula, there is a corresponding path in the BDD from root to a
terminal vertex. Figure 1 illustrates a BDD for the boolean formula (a ∧ b) ∨ (c ∧ d)
compared to a Binary Decision Tree for this same formula.

BDDs are an efficient way to represent boolean formulas. Often, they provide a
much more concise representation compared to the traditional representations, such as
conjunctive and disjunctive normal forms. BDDs are also a canonical representation
for boolean formulas. This means that two boolean formulas are logically equivalent
if and only if its BDDs are isomorphic. This property simplifies the execution of
frequent operations, like checking the equivalence of two formulas.

Fig. 1. Binary decision tree and a correspondent BDD for the formula (a ∧ b) ∨ (c ∧ d).

However, BDD has drawbacks. The most significant is related to the order in
which variables appear. Given a boolean formula, the size of the corresponding BDD

is highly dependent on the variable ordering. It can grow from linear to exponential
according to the number of variables of the formula. In addition, the problem of
choosing a variable order that minimize the BDD size is NP-complete [4]. There are
heuristics to order the BDD variables; some of them are based on the knowledge over
the problem. A review of some heuristics can be found in [8].

3 Formal Contexts Represented in BDD

3.1 BDD Construction from Formal Contexts

As mentioned, BDD is able to represent logical expressions through simplified
graphs. In this way, a context can be converted into an equivalent logic formula to be
used in the creation of the BDD representation. Table 1 shows an example of a formal
context and its possible representation through a logic function.

Table 1. Formal Context Example

 a1 a2 a3
o1 X X
o2 X X
o3 X

321321321321),,(aaaaaaaaaaaaf ++= (4)

Note that each object is represented by a logic equation, according to the presence

or not of its attributes. The function f(a1, a2, a3) results in a positive state (1) when an
object is present on the context. This function returns the negative state (0) for objects
not present in the context. Thus, any context can be represented by a logic function.

Algorithm 1. BDD construction based on the context.

in: List<Object> list
out: BDD context
 1: context = bddfalse
 2: while !list.empty() do
 3: obj = list.removeFirstObject();
 4: BDD tmp = bddtrue
 5: for i=0; i<obj.attributes; i++ do
 6: if obj.hasAttribute(i) then
 7: tmp &= bdd_ithvar(i)
 8: else
 9: tmp &= bdd_nithvar(i)
10: endif
11: done
12: context |= tmp
13: done

Algorithm 1 allows the construction of BDD based on the objects presented in the

formal context. Note that this algorithm maintains the same attribute order of the

formal context in order to build the context in BDD. The internal functions
bdd_ithvar and bdd_nithvar are specific to the BuDDy [9] library and are used to
define the presence or not of an attribute in the BDD, respectively. Once the
conjunction of attributes is made, forming the objects (lines 7 and 9), then a
disjunction of those objects is realized (line 12).

It is important to emphasize that the main objective of this work is to show the
feasibility of BDD to represent formal contexts, and from that representation extract
the formal concepts. The feasibility is shown through the manipulation of large formal
contexts. In most cases the BDD representation is less memory efficient when
compared to a bit table representation of the contexts, as will be seen in the next
section. But the memory consumption is not significant enough to invalidate its
representation in BDD. So the BDD can be used to extract concepts more efficiently
than the algorithms that work directly in the tabular representation.

3.2 BDD Representativeness Analysis

To achieve a more reliable simulation environment, all context used in this work were
built by the SCGaz tool (available at http://www.inf.pucminas.br/projetos/licap) to
evaluate the BDD performance. This tool can randomly generate formal contexts with
user-defined densities while avoiding the existence of some type of redundant
attributes and objects. The use of partially clarified contexts was considered in this
work to guarantee that the final size of the BDD representation is not influenced by
the existence of repeated objects and attributes, since this representation can internally
simplify these redundancies. This is an important step to ensure fairness of the
representation that could otherwise be used to mask the true performance of BDD.
Note that the BDD representation is not restricted to clarified contexts and can be
applied to any type of context, regardless of its information redundancy.

To construct and operate the BDD, the BuDDy library was used in which each
node of its graph is represented by 20 bytes. Thus, the number of nodes in the graph
was the parameter used to quantify the representation memory consumption. In order
to compare the BDD representativeness, a relationship between the bit table memory
consumption was stipulated. Where Stable and Sbdd correspond respectively to the table
and BDD memory sizes. This metric calculates the gain (Gain) of a representation in
relation to another. Thus, when the BDD consumes less memory than the bit table,
equation (5) is then used. When the bit table is more efficient, the expression of
equation (6) is therefore used. The negative sign indicates the loss of the BDD
compared to the bit table memory consumption.









=

bdd

table

S

S
Gain (5) 








−=

table

bdd

S

S
Gain (6)

Note that the number of nodes in the BDD is not related to the number of filled
cells of the context. Contexts with the same density and filled cells can present BDDs
with more or less nodes.

To assess the representativeness of contexts through BDD, it is considered their
behavior over different types of context: |G|=|M|, |G|<|M|, |G|>|M| and many-

valued. For each type of context considered, a pair (attribute, object) was simulated
for 10 cases of density, ranging from its minimum to its maximum value. For the
types of contexts with unique densities (many-valued and contexts |G|>|M| with
|G|=2|M| - 2), a single simulation was performed. The implementations were made in
C++ and the simulations were realized on a Pentium IV 3.06Ghz HT with 2GB of
RAM running Slackware Linux 12.0.

Contexts |G| = |M|. Table 2 and Figure 2 correspond to the representation of contexts
through BDD, where the number of objects is equal to the number of attributes. Table
2 shows the minimum, maximum, and the median values for the BDD memory
consumption (Sbdd), as well as the required time to build the BDD (Tbdd) and the
representativeness gain compared to the bit table. Figure 2 shows the gains obtained
for the cases (100, 100), (1000, 1000) and (5000, 5000) in function of the density.

Fig. 2. BDD gain for contexts |G| = |M|.

Table 2. BDD simulation for contexts |G| = |M|.

Sbdd (Kb) Tbdd (s) Gain
|G| |M|

Stable
(Kb) Min Median Max Min Median Max Min Median Max

50 50 0 2 36 39 0.01 0.02 0.03 -128.21 -117.18 -6.35
100 100 1 4 163 172 0.08 0.22 0.25 -140.64 -133.51 -3.18
300 300 11 12 1636 1669 3.27 9.06 9.18 -151.87 -148.94 -1.06
500 500 31 20 4660 4718 18.19 47.53 49.93 -154.60 -152.69 1.56

1000 1000 122 39 19038 19163 362.66 661.04 786.00 -156.98 -155.96 3.13
1500 1500 275 59 43157 43357 1217.48 2435.05 2585.38 -157.86 -157.13 4.69
2000 2000 488 78 77029 77310 3013.76 5959.37 6059.72 -158.33 -157.76 6.25
2500 2500 763 98 120662 121019 5728.60 11723.10 12051.70 -158.62 -158.15 7.81
3000 3000 1099 117 174050 174493 7252.94 14696.80 14829.50 -158.83 -158.42 9.38
3500 3500 1495 137 237203 237718 11450.90 23694.70 23907.90 -158.97 -158.63 10.94
4000 4000 1953 156 310110 310708 17159.50 35908.95 36225.80 -159.08 -158.78 12.50
4500 4500 2472 176 392771 393462 24577.30 52143.25 52561.80 -159.17 -158.89 14.06
5000 5000 3052 195 485201 485977 34321.40 73011.15 73679.80 -159.25 -158.99 15.63

As expected, BDD obtained a better performance in low and high densities

(approximately below 10% and above 90%) when compared to intermediate densities.
This occurs because with few or many incidences in the context table, there are
several similarities in the BDD graph that allow simplifications of sub-expressions.
The BDD is therefore represented with fewer nodes. Meanwhile, in the intermediate
densities, the BDD had a constant behaviour. This happens because the BDD is using

few objects compared to the total universe of objects (2|M|), making no influence in the
representation size. The BDD is unable to find enough objects similarities that could
allow significant simplification. So, the intermediate density has no effect over the
BDD representative size.

It is noteworthy that, although the BDD has had a lower performance than the bits
table, the representation of formal contexts in BDD is computationally feasible.
Through data collected by the simulations, it is pointed out that, for a context with
5,000 attributes and 5,000 objects, the BDD required expressively more memory than
the bit table representation and was able to build it in a viable computational time of
about 20 hours.

Fig. 3. BDD gain for contexts |G| = |M|.

Table 3. BDD simulation for contexts |G| < |M|.

Sbdd (Kb) Tbdd (s) Gain
|G| |M|

Stable
(Kb) Min Median Max Min Median Max Min Median Max

100 1000 12 42 1921 1929 25.19 27.68 28.03 -158.05 -157.40 -3.43
600 1000 73 390 11444 11515 151.76 253.24 255.87 -157.22 -156.24 -5.33
900 1000 110 860 17140 17251 237.00 419.00 423.23 -157.02 -156.02 -7.83
200 2000 49 82 7739 7757 211.45 286.26 289.19 -158.87 -158.49 -1.67

1200 2000 293 1612 46263 46419 1318.07 2475.16 2498.55 -158.44 -157.91 -5.50
1800 2000 439 3664 69342 69589 2099.88 3783.11 3819.29 -158.35 -157.79 -8.34
300 3000 110 117 17457 17489 725.02 1267.96 1276.93 -159.19 -158.90 -1.06

1800 3000 659 3179 104497 104745 4678.94 8663.08 8734.99 -158.90 -158.53 -4.82
2700 3000 989 8648 156663 157054 9454.73 13168.50 13297.90 -158.84 -158.44 -8.75
400 4000 195 213 31079 31124 1725.56 3227.89 3258.88 -159.36 -159.12 -1.09

2400 4000 1172 4969 186152 186497 11886.00 20967.85 21207.00 -159.15 -158.85 -4.24
3600 4000 1758 15518 279119 279660 26804.10 32140.80 32479.40 -159.10 -158.79 -8.83
500 5000 305 273 48605 48664 3403.50 6507.70 6564.56 -159.46 -159.27 1.12

3000 5000 1831 9071 291238 291674 30512.60 42217.25 42495.30 -159.29 -159.06 -4.95
4500 5000 2747 23234 436726 437409 55495.90 64979.45 65884.40 -159.26 -159.01 -8.46

Contexts |G| < |M|. Table 3 presents the data collected in simulations to settings
where the number of objects is less than the number of attributes. This is considered
the worst situation for the BDD, since there is a small amount of objects, resulting in
a low probability of finding objects with similar characteristics. Thus, the BDD is
unable to simplify enough its representation to overcome the performance of the bits
table. The representation of the bits table is still very compact in order to verify a
representativeness gain of the BDD version. A similar behavior of Figure 2 can be
observed in Figure 3. In extreme values of densities, the BDD performance had a

slightly improvement over intermediate densities. However, the gains were not
enough for the memory space consumed by the BDD representation suppress the bits
table representation. Again, the bit table representation was extremely compact. The
expressive number of attributes increases the BDD graph depth and requires more
nodes to be represented.

Fig. 4. BDD gain for contexts |G| = |M|.

Table 4. BDD simulation for contexts |G| > |M|.

Ebdd (Kb) Tbdd (s) Gain
|G| |M|

Stable

(Kb) Min Median Max Min Median Max Min Media Max
102 10 0 1 2 3 0.00 0.00 0.00 -22.52 -20.08 -10.87
613 10 1 2 4 5 0.01 0.01 0.01 -6.16 -5.56 -2.27
920 10 1 1 3 3 0.01 0.01 0.01 -2.42 -2.23 -1.15
409 12 1 3 8 8 0.00 0.01 0.01 -14.03 -12.85 -5.55

2457 12 4 3 13 14 0.03 0.03 0.03 -3.88 -3.66 1.08
3685 12 5 4 8 8 0.04 0.04 0.04 -1.53 -1.41 1.53
1638 14 3 7 24 27 0.02 0.02 0.03 -9.57 -8.73 -2.46
9829 14 17 6 42 45 0.13 0.13 0.14 -2.66 -2.52 2.82

14744 14 25 7 24 27 0.19 0.20 0.21 -1.05 1.04 3.49
6553 16 13 13 80 88 0.10 0.12 0.13 -6.90 -6.25 -1.01

39321 16 77 10 145 160 0.77 0.78 0.92 -2.08 -1.89 7.90
58981 16 115 13 80 88 1.19 1.21 1.22 1.31 1.44 8.96
26214 18 58 66 271 298 0.61 0.71 0.77 -5.18 -4.70 -1.14

157285 18 346 55 515 582 4.70 4.97 5.01 -1.68 -1.49 6.25
235928 18 518 65 270 298 7.32 7.37 7.39 1.74 1.92 7.93
104857 20 256 248 938 1033 3.71 4.54 4.79 -4.03 -3.66 1.03
629145 20 1536 225 1759 1962 28.09 30.13 43.25 -1.28 -1.15 6.84
943717 20 2304 267 936 1034 39.58 40.26 40.33 2.23 2.46 8.62

Contexts |G| > |M|. The data shown in Table 4 reflects the simulations realized with a
wider number of objects than attributes. For each type of context, the selected amount
of objects was 10%, 60% and 90% of the maximum number of objects possible (2|M|).
It is noticed by Figure 4 that the gains and losses were not significant when a large
amount of objects are used. The more the number of objects cover the total objects
universe of possibilities (2|M|), better will be the BDD representativeness. This is the
case when 90% of the maximum number of objects is used. Also, BDD presented a
stable behavior with fewer variations in the minimum, median and maximum gain for
this type of context. With fewer attributes and many objects, BDD may become an
attractive alternative to express data contained in cross tables. Also, the computational

time required to assemble the BDD graph is not a limiting factor, allowing the
construction of a BDD with 943,717 objects in times around 40 seconds. However,
this situation is only reflected in context with few attributes. Increase the amount of
attributes in the BDD has serious consequences in its size.

Many-Valued Contexts. Table 5 shows the data collected for many-valued contexts
concerning attributes ranging from 1 to 5, where each attribute was simulated with 5,
10 and 15 intervals of discretization. All contexts used in these simulations have only
one incidence per attribute, i.e. only one attribute-value by attribute. The amount of
objects considered in the simulations is shown in Figure 5 along with the considered
density. As it can be seen through Table 5, is possible to assemble a BDD context
with more than 700,000 objects in approximately 13 minutes. The gains obtained in
the data presented in Table 5 show that BDD has a satisfactory memory performance
for this type of context. The density of this type of context is naturally lower, allowing
the BDD representation to find more simplifications and be represented in a more
compact form.

Fig. 5. BDD gain for many-valued contexts.

Table 5. BDD simulation for many-valued contexts.

|G| = |V||M| |M| |V| |M||V| Den Stabela (Kb) Sbdd (Kb) Tbdd (s) Gain
5 1 5 5 20% 0 0 0.00 -60.00

25 2 5 10 20% 0 0 0.00 -11.61
125 3 5 15 20% 0 0 0.00 -2.31
625 4 5 20 20% 1 0 0.01 2.17

3125 5 5 25 20% 10 0 0.08 10.85
10 1 10 10 10% 0 0 0.00 -31.67

100 2 10 20 10% 0 0 0.00 -3.04
1000 3 10 30 10% 4 1 0.04 3.29

10000 4 10 40 10% 49 1 0.72 32.89
100000 5 10 50 10% 610 2 24.86 328.95

15 1 15 15 6% 0 0 0.00 -20.71
225 2 15 30 6% 0 1 0.01 -1.38

3375 3 15 45 6% 19 2 0.26 10.91
50625 4 15 60 6% 371 2 17.54 163.66

759375 5 15 75 6% 6952 3 759.04 2454.88

This section presented the assessment of BDD as a representation of formal

contexts. It was observed that the BDD has a satisfactory performance only on

context with fewer attributes and a large amount of objects, i.e., when the number of
objects covers much of the maximum number of objects possible (2|M|).
Unfortunately, to achieve this exorbitant amount of objects, the number of attributes
must be very small. Moreover, as mentioned, the performance of BDD deteriorates as
the number of attributes increases. As the level of depth in the BDD graph increases,
less simplification are found to reduce its size. The construction of the BDD is also
affected when the time for its assembly grows exponentially when more attributes are
expressed in the context. In addition, better results can be obtained in contexts with
densities closer to the minimum and maximum values than in intermediate values.

It is important to emphasize that the FCA derivation operator, necessary to obtain
the formal concepts, is applied on the context expressed in BDD. Therefore, the more
satisfactory is the performance of BDD, smaller will be the computational time
required to operate it. For this reason, the concepts extraction should take advantage
of this situation.

4 Formal Concepts Extraction using BDD

4.1 Concept Extraction Algorithm Implementation Using BDD

In order to use a BDD representation of formal context, algorithms to extract concepts
and/or to construct the concept lattice available in the literature must be adapted to
handle this new form of representation. To demonstrate the feasibility of BDD, the
adapted algorithm was the Attribute Intersections [10]. Note that the purpose of this
paper is to evaluate the feasibility of BDD and not its most efficient implementation
over several others algorithms.

The implementation of the Attribute Intersection algorithm in BDD was divided in
three primary stages (Fig. 6). In the first stage, the construction of the formal context
in BDD is made (Algorithm 1). The second stage is responsible to extract the set of all
concepts from the BDD context. In the final stage, it is necessary to identify the
attributes and objects from the concepts represented in BDD.

Fig. 6. Steps to implement the Attribute Intersection algorithm in BDD.

Extracting the Set of All Concepts in BDD. Algorithm 2 is the kernel of the
Attribute Intersection algorithm, but slightly modified to work with BDD. This
implementation in BDD takes advantage of two distinct moments when the derivation
operator is used (Line 4) and the intersection between two concepts is made (Line 8).
The derivation operator is easily implemented through the implicit bdd_ithvar
operator, which obtains a BDD representation of all objects that has an attribute. The

intersection between two concepts is also implemented through an implicit BDD
operation. In this case, the conjunction operator is represented in the algorithm as “&”
but implemented as bdd_and. Moreover, the concepts list in this algorithm was
implemented as a Hash to achieve a faster verification of concepts duplicity.

Algorithm 2. BDD construction based on the context.

in: BDD context
out: List<BDD> concepts
 1: concepts = new List<BDD>
 2: concepts.addConcept(context)
 3: for i=0; i<attributes; i++ do
 4: BDD tmp1 = context & bdd_ithvar(i)
 5: size = concepts.size()
 6: for j=0; j<size; j++ do
 7: BDD tmp2 = concepts.getConcept(j)
 8: BDD intersection = tmp1 & tmp2
 9: if !concepts.exist(intersection) then
10: concepts.add(intersection)
11: endif
12: done
13: done

Unfortunately, storing all the concepts as BDD in the list reflects a very expressive

memory consumption. The algorithm was slightly modified to save the concept intent
(Bi) rather than the concept (Ai, Bi) in BDD. From the intent set (Bi), one can rebuild
the concept in BDD through the formal context, thereby maintaining the essence of
the proposed Algorithm 2.

Finding the Set of Intent and Extent in Concepts Represented in BDD. This
section shows how to obtain the extent and intent of these concepts represented in
BDD. Algorithm 3 is used to check if all objects represented by the BDD share a
common attribute. Algorithm 4 is used to verify whether or not an object is present in
the BDD.

Algorithm 3. Verify the presence of an attribute in a
concept represented in BDD.

in: BDD concept, attr
out: presence
 1: BDD tmp = concept & bdd_ithvar(attr)
 2: if tmp == concept then
 3: present = true
 4: else
 5: present = false
 6: endif

For the extraction of all objects (extent) of the concept, Algorithm 4 can be used to

verify if each object that exists in the formal context is present in the concept. The
same can be applied to the set of attributes (intent), through Algorithm 3, covering all
formal context attributes checking whether or not they are present in the concept
represented in BDD.

Algorithm 4. Verify the presence of an object in a concept
represented in BDD.

in: BDD concept, objc
out: presence
 1: BDD tmp = concept
 2: for i=0; i<objc.attributes; i++ do
 3: if tmp == bddtrue then
 4: presence = true
 5: return
 6: else if tmp == bddfalse then
 7: presence = false
 8: return
 9: endif
10: if bdd_varlevel(tmp) == i then
11: if obj.hasAttribute(i) then
12: tmp = bdd_high(tmp)
13: else
14: tmp = bdd_low(tmp)
15: endif
16: endif
17: done
18: presence =(tmp == bddtrue)

4.2. Feasibility Analysis of BDD to Extract Concepts

One of the requirements to assess the representativeness of BDD to extract concepts
was to compare its performance under the same conditions as its tabular version. For
this reason, it was decided to implement a unique algorithm for both situations:
contexts represented by BDD and by a table. As previously mentioned, the algorithm
selected was the Attribute Intersections. This algorithm choice was driven by its
inherent characteristics that allow a more effectively concepts extraction from
contexts where the number of objects is superior to the attributes.

To create a more reliable simulation environment, both versions of the algorithm
were constructed sharing the same types of strategies. The BDD version was
constructed according to the diagram in Figure 6, while the tabular version was
constructed with several optimizations. Both of them uses a list that holds concepts
intent as a hash-table and shares the same hash function. The BDD version has an
intrinsically feature that, when there is an intersection between two other concepts,
the result is already a concept; while in the tabular version it is necessary to further
use derivation operators to acquire the concept. To overcome this problem, the
concept is obtained only after the verification of if its intent is not present in the list
yet. Thus, the tabular version of the algorithm avoids unnecessary derivation
operations and maintains similarity to the BDD version. Another feature was the
implementation in the conventional version of the algorithm: the derivation operator
uses a data structure similar to a BitSet. The efficiency of the operators becomes
superior by decreasing the amount of comparisons between two sub-sets of concept
extents. In this sense, various enhancements aimed at a more rapid extraction of
concepts in order to achieve a more effective comparison of the BDD viability.

Another difference between the two versions evaluated is related to how each of
them carries out their intersections. The BDD version performs the intersection

between concepts represented in BDD through the implicit bdd_and operator, while
the tabular version performs the intersection between the previously computed
concepts extents. After that step, both algorithms must identify the concepts intent.
The BDD version takes advantage of this situation because of its extremely efficient
bdd_ithvar operator, but looses in performance in stage 3 of the diagram in Figure 6.
The table version is not affected by this problem since it obtains the concept intent
and extent through the derivation operators. Thus, several simulation scenarios are
necessary to evaluate the algorithm behavior over different conditions.

Figure 7 shows the behavior of the Attribute Intersections algorithm for the BDD
and tabular version for contexts with fewer attributes (20 to 100) and many objects
(10,000 to 60,000). This algorithm has better performance for contexts |G|>|M| . To
ensure that the BDD graph would not be extremely compact, the used density for all
contexts was the minimum plus 10% of it. Moreover, lower density values result into
smaller amounts of concepts, thus making the simulations consume less time to
execute. All simulations were realized on a Pentium Dual Core 2.66Ghz with 2Gb of
RAM running Linux Slackware Linux 12.0. The implementations for both versions of
the Attribute Intersections algorithm were implemented in C++.

(a) Contexts with |G|=10000 (b) Contexts with |G|=20000

(c) Contexts with |G|=30000 (d) Contexts with |G|=40000

(e) Contexts with |G|=50000 (f) Contexts with |G|=60000

Fig. 7. Evaluation of Attribute Intersections implemented as a table and BDD.

As it can be seen in Figure 7, the implementation of the algorithm in BDD had an
exponential performance in all the simulations, while the tabular version has
presented an irregular decreasing behavior. For the table version, the density can
explain the decreasing behavior, since lower attributes value had higher density for
these considered simulations. In addition to that, how the incidences are spread into
the context can explain its irregular behavior. Different contexts with the same density
may have different execution performance. On the other hand, the BDD version
presented a stable exponential behavior. Increasing the quantity of attributes in the
context, more nodes will be required to construct the BDD. Therefore, as more nodes
are used by the BDD, less efficient will be the operations in this representation. Thus,
explaining this uniform behavior. Also, as can be seen by simulations of 20 and 30
attributes, while the tabular version had worst time performance, this BDD
maintained a very low execution time, despite of the higher density. So, the BDD size
is extremely relevant in the computation of all concepts.

Through simulation, it is demonstrated that BDD has a better overall performance
than the table version for a number of attributes lower than or equal to 70. Above this
threshold, the BDD graph becomes complex and begins to turn into an unattractive
solution. Also, as the amount of objects increases, greatest has become the difference
between the execution times of both implementations, considering attributes up to 70.
Thus, the implicit representation of concepts in BDD becomes an alternative to a
more efficient extraction of concepts in these conditions.

Considering now a threshold of 70 attributes, another simulation scenario was
created. This time, the number of objects chosen was based on the ICFCA’06
challenge. A many-valued context was simulated with 7 attributes, a fixed number of
10 attribute-values per attribute and 120,000 objects. The context had a density of
10% and generated 1,172,960 concepts. Table 6 presents the spent time consumed by
both algorithm implementations, in BDD and in table.

Table 6. Execution time for many-valued context with 70 attributes and 120000 objects.

Construction of
the Context (s)

Concepts
Extraction (s)

Intent and Extent
Identification (s)

Total (s) Total

Table - - - 251283 2d 21:48:03
BDD 128 18345 33289 51762 0d 14:22:42

As it can be seen in Table 6, the BDD version obtained the set of all concepts in
less than 15 hours, while the tabular version demanded almost three days for its
complete execution. Applicability to process larger contexts could be achieved with
the use of a distributed version of an algorithm implemented in BDD. If we consider
that a context with 70,000 attributes and 120,000 objects can be divided into sub-
contexts of 70 attributes and 120,000 objects, still maintaining a low density, then it
would be necessary, in general, 15 thousands of execution hours. Considering that all
sub-contexts were executed in execution times around 15 hours. If a cluster of 50
computers were used, then it would be required around 300 execution hours, about 15
days. It will be still necessary to join the sub-concepts to form the concepts final set,
but the BDD opens a possibility to process this large contexts.

Note that the required time to identify the set of extents from the concepts
represented in BDD was very significant, as seen by Table 6. This happens because of
the used algorithm quadratic complexity relative to the number of objects. If more
efficient algorithms were used, lower computational times may be achieved to process
contexts. Instead of a brute force strategy to check objects presence in a concept,
another strategy could be visiting BDD nodes identifying the objects, inverted form.

5 Conclusions

The present work is related to a challenge raised at the ICFCA’06 conference, which
refers to the manipulation of large formal contexts. Through the use of an implicit
representation of formal context in BDD, it has been demonstrated that this new
representation became computationally feasible for handling large contexts, when
compared to the conventional manipulation of a table.

In this work, the representation of the formal contexts in BDD were evaluated in
two distinct aspects, as the memory consumption in relation to a bit table and as the
computational time spent in its construction. It was later assessed the performance of
the algorithm Attribute Intersection adapted to be used with BDD compared to the
conventional implementation as a table. It has been verified that the BDD can be
applied to the FCA algorithms to improve the execution time required to complete the
extraction of all concepts. Although this representation allows the manipulation of
contexts with a large number of objects, it is restricted to contexts with few attributes
(up to 70 attributes, as experimentally verified). This is due to the fact that BDD tends
to improve their representation with a larger number of objects, allowing further
simplifications on its graph and thus making the operations on it more efficient. It has
been also realized that the lower the number of attributes in the context the higher will
be the BDD performance when compared to the conventional implementation of the
algorithm, as verified in Figure 7. Thus, if the context meets this feature, a significant
efficiency can be achieved with the application of this new alternative. This can also
be verified for many-valued contexts in Table 6, in which the difference between both
execution times was approximately of 2 days of uninterrupted processing.

The context density is an aspect that is intimately related to the number of concepts
obtained. The concepts extraction using a BDD representation is still conditioned to
this characteristic. Therefore, all simulations were limited to low densities.

Several future works may be pointed out: Evaluating new libraries for BDDs
construction and manipulation, like CUDD [11]; measuring the behavior over
different BDD technologies, like ZBDDs; evaluate different orders for attributes
(statically or dynamically chosen) to construct the BDD; and adapting others FCA
algorithms that could be used with BDD. ZBDD have already proven to be
satisfactory for spare contexts [5], but in some type of contexts, in our preliminary
results, the standard BDD was able to beat the ZBDD performance. Further analysis is
therefore required. Also, in order to adapt others FCA algorithms a study must be
conducted to verify whenever the BDD can be applied. In other words, which
algorithm operations can be similarly replaced by a BDD operation in order to
increase the algorithms capabilities. For example, in this work, the intersection of
concepts in the Attribute Intersection was implemented by replacing this function
with a correlated BDD conjunction operator that enabled performance improvements.

Although the results presented in this paper have been shown to be satisfactory for
many objects (120,000) and a few attributes (in the order of 70), it is possible to use
the BDD approach in conjunction with distributed FCA algorithms. Thus increasing
processing power of contexts with larger number of attributes while still maintaining
its inherent capability of processing huge amounts of objects.

References

1. Li, Y., Liu, Z.T., Shen, X.J., Wu, Q., Qiang, Y.: Theoretical research on the distributed
construction of concept lattices. International Conference on Machine Learning and
Cybernetics, 2003 1 (2003) 474-479 Vol.1

2. Liu, Z., Li, L., Zhang, Q.: Research on a union algorithm of multiple concept lattices. In:
RSFDGrC, Springer (2003) 533-540

3. Lévy, G., Baklouti, F.: A distributed version of the ganter algorithm for general galois
lattices. In: CLA 2005. (2005) 207-221

4. Bryant, R.: Graph-based algorithms for boolean function manipulation. IEEE Transactions
on Computers C-35(8) (1986) 677-691

5. Yevtushenko, S.: Computing and Visualizing Concept Lattices. PhD thesis, TU Darmstadt,
Fachbereich Informatik (2004)

6. Minato, S.: Zero-suppressed BDDs for set manipulation in combinatorial problems. In: DAC
'93: Proceedings of the 30th International Conference on Design Automation, New York,
NY, USA, ACM (1993) 272-277

7. Grätzer, G.: General Lattice Theory. Birkhäuser, Basel (1978)
8. Butler, K.M., Ross, D.E., Kapur, R., Mercer, M.R.: Heuristics to compute variable orderings

for efficient manipulation of ordered binary decision diagrams. In: DAC'91: Proceedings of
the 28th Conference on ACM/IEEE Design Automation, New York, NY, USA, ACM
(1991) 417-420

9. Lind-Nielsen, J.: Buddy: A binary decision diagram. Technical report, Department of
Information Technology, Technical University of Denmark, Lyngby, Denmark (1999)
http://www.itu.dk/research/buddy.

10.Carpineto, C., Romano, G.: Concept Data Analysis: Theory and Applications. John Wiley &
Sons, Indianapolis, IN, USA (2004)

11.Somenzi, F.: CUDD: CU decision diagram package release (1998)

