
Evaluation of Different BDD Libraries to Extract
Concepts in FCA – Perspectives and Limitations

Andrei Rimsa, Luis E. Zárate, Mark A. J. Song

Department of Computer Science, Applied Computational Intelligence Laboratory

 Pontifical Catholic University of Minas Gerais - Brazil
rimsa@live.com, {zarate, song}@pucminas.br

Abstract. This paper presents evaluation of different types of Binary Decision
Diagrams (BDDs) applied to Formal Concept Analysis (FCA). The aim is to
increase the FCA capability to handle large formal contexts and perform faster
operations over different types of this data structure. The main idea is to
represent formal context using BDDs for later extraction of the set of all formal
concepts from this implicit representation. A comparison of a concept
extraction algorithm using contexts implemented as table and BDD are
presented. BDD is evaluated over two different implementation libraries,
BuDDy and CUDD. A ZBDDs (Zero-Supressed BDDs) version of the concepts
extraction algorithm is also provided. BDD has been evaluated based on several
types of randomly generated synthetic contexts with large amounts of objects.
Contexts are evaluated according to the computational time complexity
required to build and extract the set of all concepts from it. In this work, it is
shown that BDD could be used to deal with large formal contexts especially
when those have few attributes and many objects. To overcome the limitations
of having contexts with fewer attributes, one could consider vertical partitions
of the context to be used with distributed FCA algorithms based on BDD.

Keywords: Formal Concept Analysis, Formal Context, Formal Concept,
Binary Decision Diagrams, Zero-Supressed Binary Decision Diagrams.

1 Introduction

At the International Conference on Formal Concept Analysis in Dresden (ICFCA
2006) an open problem of "Handling large contexts" was pointed out and as an
example was cited the challenge of "how to calculate/generate all concepts of a large
context" (e.g. 120,000 x 70,000 objects attributes). In these cases, traditional FCA
algorithms have high computational cost and demand high execution times, making
the extraction of all concepts infeasible for larger contexts.

One possible solution to deal with the problem of handling large formal contexts is
to apply a distributed solution for the processing of contexts. Partial concepts are
obtained for later merging through a specific operator to find the final set of concepts.
Several authors have presented formal proposals and mathematical formalisms for
distributed application of FCA, as can be seen in [1-3].

 It is clear the potential of FCA to represent and extract knowledge from a set of
objects and attributes and it is even more clear the problem of dealing with databases
of high dimensionality. Application in real problems often suffers from this common
fact. In this work, an approach to meet the challenge mentioned above consists in
applying Binary Decision Diagrams (BDDs) [4] to obtain a symbolic representation
of a cross table (formal context) that allows a more efficient extraction of the set of all
concepts. It will be shown that this approach is promising and that it can handle more
efficiently with large contexts when compared with the conventional implementation
of algorithms that handle standard tables.

Although BDD has already been used in the FCA to represent the concept lattice
[5], this article focus in the representation of formal contexts in BDD to achieve faster
concepts extraction. Different BDD libraries will be used to evaluate BDD, including
the BuDDy [6] and CUDD [7] package. Both support several variable reordering
methods and present a C++ interface that reference nodes automatically and
dereference them accordingly by the garbage collector. In addition, CUDD has built-
in Zero-Suppressed BDDs [8] capabilities that were also evaluated in this work.

This article is organized in five sections. In the second section, the main concepts
of the FCA and BDD are reviewed. In the third section, examining the representation
of formal contexts through BDD and the extraction of concepts from this implicit
representation is discussed. In the fourth section, BDD is evaluated over several large
formal contexts. In the last section, the conclusions and future works are pointed out.

2 Formal Context

2.1 Formal Concept Analysis

Formal Context. Formal contexts have the notation K:=(G, M, I), where G is a set of
objects (rows headers), M is a set of attributes (columns headers) and I is an incidence
relation (I ⊆ G × M). If an object g ∈ G and an attribute m ∈ M are in the relation I, it
is represented by (g, m) ∈ I or gIm and is read as “the object g has the attribute m”.

Given a set of objects A ⊆ G from a formal context K:=(G, M, I), it could be asked
which attributes from M are common to all those objects. Similarly, it could be asked,
for a set B ⊆ M, which objects have the attributes from B. These questions define the
derivation operators, which are formally defined as:

A’:= {m ∈ M | gIm ∀ g ∈ A} ; B’:= {g ∈ G | gIm ∀ m ∈ B} (1)

A special case of derivate sets occurs when empty sets of objects or attribute are
considered to be derivate:

A ⊆ G = Ø ⇒ A’:=M ; B ⊆ M = Ø⇒ B’:=G (2)

Formal Concept. Formal concepts are pairs (A, B), where A ⊆ G (called extent) and
B ⊆ M (called intent). Each element of the extent (object) has all the elements of the
intent (attributes) and, consequently, each element of the intent is an attribute of all

objects of the extent. The set of all formal concepts in a formal context has the
notation B(G, M, I). Since that a cross table representing a formal context is given,
algorithms can be applied in order to determine its formal concepts and its lattice [9].

2.2 Binary Decision Diagrams

Binary decision diagrams are a canonical representation of boolean formulas [4]. The
BDD is obtained from a binary decision tree by merging identical subtrees and
eliminating nodes with identical left and right siblings. The resulting structure is a
graph rather than a tree in which nodes are eliminated and substructures are shared.

Formally, a BDD is a directed acyclic graph with two types of vertex: non-terminal
and terminal. Each non-terminal vertex is a distinct variable of the corresponding
boolean formula. Also, each vertex has two outgoing arcs directed toward two
children, corresponding to the case where variable is 0 (left) and 1 (right). A BDD has
two terminal vertices labeled by 0 and 1, representing the truth-value of the formula
false and true, respectively. For every truth assignment to the boolean variables of the
formula, there is a corresponding path from root to a terminal vertex.

Zero-Suppressed BDD (ZBDD) is a graph representation similar to a BDD. ZBDD
also represents boolean formulas by elimination nodes and sharing subtrees.
However, as opposed to BDD, it does not eliminate nodes whose two edges, left and
right arcs, points to the same node. It presented another elimination rule in which all
nodes that the right arc points to the zero terminal node are removed [8]. The BDD
rule to merge identical subtrees is still present in ZBDD.

(a) Binary Decision Tree (b) BDD (c) ZBDD

Fig. 1. Graph representation for formula (a ∧ b) ∨ (c ∧ d).

Figure 1 illustrates a BDD and a ZBDD compared to a Binary Decision Tree for
the boolean formula (a ∧ b) ∨ (c ∧ d). Note in the ZBDD diagram that the nodes with
two arcs pointing to the same node weren’t removed like it would be with BDD. But
nodes in ZBDD can still be removed when the new elimination rule is applied.

BDDs are an efficient way to represent boolean formulas. Often, they provide a
much more concise representation compared to the traditional representations, such as
conjunctive and disjunctive normal forms. BDDs are also a canonical representation
for boolean formulas. This means that two boolean formulas are logically equivalent
if and only if its BDDs are isomorphic. This property simplifies the execution of
frequent operations, like checking the equivalence of two formulas.

However, BDD has drawbacks. The most significant is related to the order in
which variables appear. Given a boolean formula, the size of the corresponding BDD
is highly dependent on the ordering. It can grow from linear to exponential according
to the number of variables of the formula. In addition, the problem of choosing a
variable order that minimize the BDD size is NP-complete [4]. Despite the existence
of heuristics to automatically order the variables, they are often ordered manually.

3 Formal Concepts Extraction using BDD

When formal contexts are represented as BDDs, it is possible to implement derivation
operators to work directly over this representation, thus allowing FCA algorithm
independence. Unfortunately, the cost to identify the set of objects from a BDD
concept is too expensive, thus invalidating this alternative. To overcome this problem,
algorithms to extract concepts and/or to construct the concept lattice available in the
literature must be adapted to handle this new form of representation.

To demonstrate the feasibility of BDD, the adapted algorithm was the Attribute
Intersections [10] because of its inherent characteristics that allow a more effectively
concepts extraction from contexts with more objects than attributes. This algorithm
implementation in BDD was divided in three primary stages (Fig. 2). In the first stage,
the construction of the context in BDD is made. The second stage is responsible to
extract the set of all concepts from the BDD context. The final stage is responsible to
identify the attributes and objects from the concepts represented in BDD. These stages
separation avoids unnecessary high cost operations while obtaining the concepts.

Fig. 2. Steps to implement the Attribute Intersection algorithm in BDD.

3.1 Formal Context Construction in BDD

To create the BDD representation, a formal context must be converted into an
equivalent logic boolean formula. Table 1 shows an example of a formal context and
its possible representation through a logic function (Equation 3).

Table 1. Formal Context Example.

 a1 a2 a3
o1 X X
o2 X X
o3 X

321321321321),,(aaaaaaaaaaaaf ++= (3)

Note that each object is represented by a logic equation, according to the presence
or not of its attributes. The function f(a1, a2, a3) results in a positive state (1) when an
object is present on the context. This function returns the negative state (0) for objects
not present in the context. Thus, any context can be represented by a logic function.

Algorithm 1 allows the construction of BDD based on the objects presented in the
formal context. The internal functions bdd_ithvar and bdd_nithvar are specific to the
library BuDDy [6] and are used to define the presence or not of an attribute in the
BDD, respectively. The CUDD library has it own function wrappers to perform this
operation, Cudd_bddIthvar. To obtain the respective negative variable, CUDD
requires the use of Cudd_Not in conjunction with the Cudd_bddIthvar. Once the
conjunction of attributes is made forming the objects (lines 7 and 9) then a disjunction
of those objects is realized (line 12) to build the context.

Algorithm 1. BDD construction based on the context.

in: List<Object> list
out: BDD context
 1: context = bddfalse
 2: while !list.empty() do
 3: obj = list.removeFirstObject();
 4: BDD tmp = bddtrue
 5: for i=0; i<obj.attributes; i++ do
 6: if obj.hasAttribute(i) then
 7: tmp &= bdd_ithvar(i)
 8: else
 9: tmp &= bdd_nithvar(i)
10: endif
11: done
12: context |= tmp
13: done

Normally, ZBDDs are constructed by converting from a previously created BDD.

However, to maintain coherence with the Algorithm 1, in this work, the ZDD was
built object by object. CUDD maintains a different structure to operate ZBDD and
positive variables reference may be achieved using the Cudd_zddIthVar. Since
ZBDDs works with one’s complement, it is not possible to use the standard Cudd_Not
approach to obtain the negative part of a variable. But it can be obtained by the
Cudd_zddDiff function, using the resulting difference from a 1-node constant, thus
acquiring the complement.

In this work, references and dereferences of nodes were made manually when the
CUDD library was used. In the other hand, the BuDDy C++ wrapper was used that
allowed automatic references and dereferences of nodes. The garbage collector
dereferences nodes automatically when memory resources are claimed.

It is important to emphasize that the main objective of this work is to show the
feasibility of BDD to represent formal contexts, and from that representation extract
the formal concepts. The feasibility is shown through the manipulation of large formal
contexts. In most cases, the BDD representation of contexts often consumes several
memory resources. However, it is not significant enough to invalidate this new
representation in BDD. So the BDD can be used to extract concepts more efficiently
than the algorithms that work directly in the tabular representation.

3.2 Extracting the Set of All Concepts in BDD.

Algorithm 2 is the kernel of the Attribute Intersection algorithm, but slightly modified
to work with BDD. This implementation in BDD takes advantage of two distinct
moments when the derivation operator is used (Line 4) and the intersection between
two concepts is made (Line 8). The derivation operator is easily implemented through
the implicit bdd_ithvar operator, which obtains a BDD representation of all objects
with an attribute. The intersection between two concepts is also implemented through
an implicit BDD operation, bdd_and (&). Moreover, the concepts list was
implemented as a hashtable to achieve a faster verification of concepts duplicity. The
algorithm kernel is the same for the CUDD version with BDD and ZBDD.

Algorithm 2. BDD construction based on the context.

in: BDD context
out: List<BDD> concepts
 1: concepts = new List<BDD>
 2: concepts.addConcept(context)
 3: for i=0; i<attributes; i++ do
 4: BDD tmp1 = context & bdd_ithvar(i)
 5: size = concepts.size()
 6: for j=0; j<size; j++ do
 7: BDD tmp2 = concepts.getConcept(j)
 8: BDD intersection = tmp1 & tmp2
 9: if !concepts.exist(intersection) then
10: concepts.add(intersection)
11: endif
12: done
13: done

Unfortunately, storing all the concepts as BDD in the list reflects a very expressive

memory consumption. The algorithm was slightly modified to save the concept intent
(Bi) rather than the concept (Ai, Bi) in BDD. From the intent set (Bi), one can rebuild
the concept in BDD, thereby maintaining the essence of the proposed Algorithm 2.

3.3 Finding the Set of Intent and Extent in Concepts Represented in BDD.

This section shows how to obtain the extent and intent of the concepts represented in
BDD. Algorithm 3 is used to check if all objects represented by the BDD share an
attribute in common. Algorithm 4 is used to verify whenever an object is present in
the BDD concept.

For the extraction of all objects (extent) of the concept, Algorithm 4 can be used to
verify if each object that exists in the formal context is present in the concept. The
same can be applied to the set of attributes (intent), through Algorithm 3, covering all
formal context attributes checking whether or not they are present in the concept.
Also, in Algorithm 4, the BuDDy bdd_varlevel operation has no correspondence in
the CUDD library, but can be obtained by their node index value.

Algorithm 3. Verify the presence of an
attribute in a concept represented in BDD.

in: BDD concept, attr
out: presence
 1: BDD tmp = concept & bdd_ithvar(attr)
 2: if tmp == concept then
 3: present = true
 4: else
 5: present = false
 6: endif

Algorithm 4. Verify the presence of an object
in a concept represented in BDD.

in: BDD concept, objc
out: presence
 1: BDD tmp = concept
 2: i = 0
 3: while i<objc.attributes and
 4: tmp != {bddtrue, bddfalse} do
 5: if bdd_varlevel(tmp) == i then
 6: if obj.hasAttribute(i) then
 7: tmp = bdd_high(tmp)
 8: else
 9: tmp = bdd_low(tmp)
10: endif
11: endif
12: i++
13: done
14: presence =(tmp == bddtrue)

Although Algorithm 4 is used to identify if an object exists in a BDD concept, it

was not used in the Attribute Intersection implementation. As mentioned, only the
concepts intents are store in the list. With the intents it is not necessary to rebuild the
BDD concept to verify objects presence. It can be done directly by checking if every
object has the attributes of each of the intent sets on the list.

4 Feasibility Analysis of BDD to Extract Concepts

One of the requirements to assess the representativeness of BDD to extract concepts
was to compare its performance under the same conditions as its tabular version. For
this reason, it was decided to implement a unique algorithm for the situations:
contexts represented in BDD (with BuDDy and CUDD), ZBDD (with CUDD) and by
a table. Also, several optimizations on the table version were made to meet this
purpose. Moreover, SCGaz (available at http://www.inf.pucminas.br/projetos/licap)
was the tool responsible to build all contexts used in this work. This tool allows the
construction of semi-clarified contexts, avoiding some types of attributes and objects
redundancy, like repeated objects and also empty and full attributes and objects.

Figure 3 shows the behavior of the Attribute Intersections algorithm for the BDD
with BuDDy and CUDD, ZBDD and tabular version for contexts with fewer attributes

(20 to 100) and many objects (10,000 to 60,000). To ensure that the BDD would not
be extremely compact, the used density for all contexts was the minimum plus 10% of
it. Moreover, lower density values result into smaller amounts of concepts, thus
making the simulations consumes less time to execute. All software were written in
C++ and executed on a Pentium Dual Core 2.66GHz with 2Gb of RAM running
Linux Slackware 12.0.

Fig. 3. Evaluation of Attribute Intersections implemented as a table, BDD and ZBDD.

The tabular version has presented an irregular decreasing behavior because of the
density, since with few attributes higher will be the density for these considered
simulations. In addition to that, how the incidences are spread into the context can
explain its irregular behavior. The BDDs and ZBDD had exponential behavior, even
the CUDD version that may appear linear. Increase the attributes may allow to

observe its exponential behavior. With more attributes, more nodes will be required to
construct the BDD. Therefore, less efficient will be the operations in this
representation. Also, as can be seen by simulations of 20 and 30 attributes, while the
tabular version had worst time performance, the BDD maintained a very low
execution time, despite of the higher density. So, the context BDD size is extremely
relevant to the extraction of all concepts.

The BDD with CUDD package had better performance over the table in all
simulations, making it strongly reliable. It would be necessary more simulations with
higher attributes to verify if there is a threshold in which the table begins to be more
worthed. BDD with BuDDy and ZBDD had better performance over table when the
number of concepts is not superior to 70. As the amount of objects increases, greatest
has become the difference between the execution times of BDD implementations
compared to the table. Thus, the implicit representation of concepts in BDD becomes
an alternative to a more efficient extraction of concepts in these conditions.

Considering now a threshold of 70 attributes, another simulation scenario was
created. A many-valued context was simulated with 7 attributes, a fixed number of 10
attribute-values per attribute and in two situations with objects, 60,000 and 120,000.
This type of context has 7 attributes per object (|g’|=7). Table 2 and 3 presents the
spent time consumed by these situations.

Table 2. Execution time for many-valued context with |M|=70, |G|=60,000 and |g’|=7.

Construction of
the Context (s)

Concepts
Extraction (s)

Intent and Extent
Identification (s)

Total (s) Total

Table - - - 81059 0d 22:30:57
BuDDy BDD 51 10151 9946 20148 0d 05:35:48
CUDD BDD 192 14075 10107 24374 0d 06:46:14

CUDD ZBDD 306 10272 9703 20281 0d 05:38:01

Table 3. Execution time for many-valued context with |M|=70, |G|=120,000 and |g’|=7.

Construction of
the Context (s)

Concepts
Extraction (s)

Intent and Extent
Identification (s)

Total (s) Total

Table - - - 251283 2d 21:48:03
BuDDy BDD 128 18345 33289 51762 0d 14:22:42
CUDD BDD 569 36841 33043 70453 0d 19:34:13

CUDD ZBDD 629 22107 34844 57580 0d 15:59:40

For this type of context, BDD and ZBDD had outstanding improvement over the

tabular version. As opposed to the previous simulations, the BDD with CUDD
presented the least performance. In spare context, ZBDD was proven faster, but not
enough to beat BuDDy performance. Also, CUDD required more time to build the
context, possibly affecting the final BDD size. BDD with BuDDy and ZBDD had
similar execution times for contexts with 60,000 objects, but taking the ICFCA’06
challenge with 120,000 objects, the difference was quite significant, over 1 hour and a
half. Compared to the table version, the difference between the BuDDy version was
almost three days. Applicability to process larger contexts could be achieved with the
use of a distributed version of an algorithm implemented in BDD.

Note that the required time to identify the set of extents from the concepts
represented in BDD was very significant, as seen by Table 2 and 3. This happens

because of the used algorithm quadratic complexity relative to the number of objects.
If more efficient algorithms were used, lower computational times may be achieved to
process contexts. Instead of a brute force strategy to check objects presence in a
concept, another strategy could be visiting BDD nodes in order to identify the objects.

5 Conclusions

The present work is related to a challenge raised at the ICFCA’06 conference, which
refers to the manipulation of large formal contexts. Through the use of an implicit
representation of formal context in BDD, it has been demonstrated that this new
representation became computationally feasible for handling large contexts, when
compared to the conventional manipulation of a table. Although the BDD allows the
manipulation of contexts with a large number of objects, it is restricted to contexts
with few attributes. Thus, if the context meets this feature, a significant efficiency can
be achieved with the application of this new alternative.

As future work, more robust FCA algorithms could be adapted to use BDD or
ZBDD. It’s essential to verify the feasibility of BDD application in a fast algorithm,
like CHARM [11]. Even faster concepts extraction may be achieved with others
algorithms applied with BDD.

References

1. Li, Y., Liu, Z.T., Shen, X.J., Wu, Q., Qiang, Y.: Theoretical research on the distributed
construction of concept lattices. Machine Learning and Cybernetics, 2003 International
Conference on 1 (2003) 474-479 Vol.1

2. Liu, Z., Li, L., Zhang, Q.: Research on a union algorithm of multiple concept lattices. In:
LNAI 2639, Springer-Verlag (2003) 533-540

3. Lévy, G., Baklouti, F.: A distributed version of the ganter algorithm for general galois
lattices (2005).

4. Bryant, R.: Graph-based algorithms for boolean function manipulation. IEEE Transactions
on Computers C-35(8) (1986) 677-691

5. Yevtushenko, S.: Computing and visualizing concept lattices. PhD thesis, TU Darmstadt,
Fachbereich Informatik (2004)

6. Lind-Nielsen, J.: Buddy: A binary decision diagram. Technical report, Department of
Information Technology, Technical University of Denmark, Lyngby, Denmark (1999)
http://www.itu.dk/research/buddy.

7. Somenzi, F.: CUDD: CU decision diagram package release (1998)
8. Minato, S.: Zero-suppressed BDDs for set manipulation in combinatorial problems. In: DAC

'93: Proceedings of the 30th International Conference on Design Automation, New York,
NY, USA, ACM (1993) 272-277

9. Grätzer, G.: General Lattice Theory. Birkhäuser, Basel (1978)
10.Carpineto, C., Romano, G.: Concept Data Analysis: Theory and Applications. John Wiley &

Sons, Indianapolis, IN, USA (2004)
11.Zaki, M., Hiao, C.: ChARM: An efficient algorithm for closed association rule mining.

Technical Report 99-10, Computer Science Dept., Rensselaer Polytechnic Inst., Troy, NY,
USA (October 1999)

