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Abstract. This paper presents evaluation of different typeBinary Decision
Diagrams (BDDs) applied to Formal Concept Analysi€A}: The aim is to
increase the FCA capability to handle large fornmaitexts and perform faster
operations over different types of this data street The main idea is to
represent formal context using BDDs for later extoaicof the set of all formal
concepts from this implicit representation. A comgen of a concept
extraction algorithm using contexts implemented table and BDD are
presented. BDD is evaluated over two different im@atation libraries,
BuDDy and CUDD. A ZBDDs (Zero-Supressed BDDs) versibthe concepts
extraction algorithm is also provided. BDD has beealuated based on several
types of randomly generated synthetic contexts Veithe amounts of objects.
Contexts are evaluated according to the computdtidinee complexity
required to build and extract the set of all consdpm it. In this work, it is
shown that BDD could be used to deal with large fdroontexts especially
when those have few attributes and many objectavEocome the limitations
of having contexts with fewer attributes, one coadahsider vertical partitions
of the context to be used with distributed FCA aikpons based on BDD.
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1 Introduction

At the International Conference on Formal Concepalgsis in Dresden (ICFCA
2006) an open problem of "Handling large contextgls pointed out and as an
example was cited the challenge of "how to caleddginerate all concepts of a large
context" (e.g. 120,000 x 70,000 objects attributéis)these cases, traditional FCA
algorithms have high computational cost and dentagd execution times, making
the extraction of all concepts infeasible for largentexts.

One possible solution to deal with the problem aridiing large formal contexts is
to apply a distributed solution for the processofgcontexts. Partial concepts are
obtained for later merging through a specific opmrto find the final set of concepts.
Several authors have presented formal proposalsnattiematical formalisms for
distributed application of FCA, as can be seeriif][



It is clear the potential of FCA to represent amxtract knowledge from a set of
objects and attributes and it is even more cleaptioblem of dealing with databases
of high dimensionality. Application in real problemoften suffers from this common
fact. In this work, an approach to meet the chgementioned above consists in
applying Binary Decision Diagrams (BDDs) [4] to alnt a symbolic representation
of a cross table (formal context) that allows a enefficient extraction of the set of all
concepts. It will be shown that this approach snising and that it can handle more
efficiently with large contexts when compared wiitie conventional implementation
of algorithms that handle standard tables.

Although BDD has already been used in the FCA frasent the concept lattice
[5], this article focus in the representation afnfal contexts in BDD to achieve faster
concepts extraction. Different BDD libraries Wik used to evaluate BDD, including
the BuDDy [6] and CUDD [7] package. Both supporvesal variable reordering
methods and present a C++ interface that referemmdes automatically and
dereference them accordingly by the garbage collett addition, CUDD has built-
in Zero-Suppressed BDDs [8] capabilities that vadse evaluated in this work.

This article is organized in five sections. In 8econd section, the main concepts
of the FCA and BDD are reviewed. In the third smttiexamining the representation
of formal contexts through BDD and the extractidnconcepts from this implicit
representation is discussed. In the fourth secB®&MD) is evaluated over several large
formal contexts. In the last section, the conclusiand future works are pointed out.

2 Formal Context

2.1 Formal Concept Analysis

Formal Context. Formal contexts have the notatikn=(G, M, I), whereG is a set of
objects (rows headerdy is a set of attributes (columns headers) laiscan incidence
relation ( /7G xM). If an objectg 00 G and an attributen [0 M are in the relatiot, it
is represented by(m) 01 orgimand is read adtie object g has the attributé’m
Given a set of objecta [0 G from a formal contexK:=(G, M, I), it could be asked
which attributes fronM are common to all those objects. Similarly, it Icolbe asked,
for a setB 0 M, which objects have the attributes fr@&nThese questions define the
derivation operators, which are formally defined as

A={mOM|gimOgOA}; B:={g 0G| gimOm03B} (1)
A special case of derivate sets occurs when engis/f objects or attribute are
considered to be derivate:
AOG=@ = A:=M;B OM=0= B:=G 2

Formal Concept. Formal concepts are pair8,(B), whereA /7 G (called extent) and
B /M (called intent). Each element of the extent (af)jeas all the elements of the
intent (attributes) and, consequently, each eleroétihe intent is an attribute of all



objects of the extent. The set of all formal consep a formal context has the
notationB(G, M, 1). Since that a cross table representing a formategors given,
algorithms can be applied in order to determindoitsial concepts and its lattice [9].

2.2 Binary Decision Diagrams

Binary decision diagrams are a canonical representaf boolean formulas [4]. The
BDD is obtained from a binary decision tree by nmggidentical subtrees and
eliminating nodes with identical left and right lgiigs. The resulting structure is a
graph rather than a tree in which nodes are elitmihand substructures are shared.

Formally, a BDD is a directed acyclic graph wittottypes of vertex: non-terminal
and terminal. Each non-terminal vertex is a distivariable of the corresponding
boolean formula. Also, each vertex has two outgoémgs directed toward two
children, corresponding to the case where varisbigleft) and 1(right). A BDD has
two terminal vertices labeled by 0 and 1, représgrthe truth-value of the formula
false and true, respectively. For every truthgrmssient to the boolean variables of the
formula, there is a corresponding path from roat terminal vertex.

Zero-Suppressed BDD (ZBDD) is a graph represemtaimilar to a BDD. ZBDD
also represents boolean formulas by elimination esodnd sharing subtrees.
However, as opposed to BDD, it does not eliminatées whose two edges, left and
right arcs, points to the same node. It presentedthar elimination rule in which all
nodes that the right arc points to the zero terhnoae are removed [8]. The BDD
rule to merge identical subtrees is still presardBDD.
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Fig. 1. Graph representation for formula{d) O (c O d).

Figure 1 illustrates a BDD and a ZBDD compared tiary Decision Tree for
the boolean formuléa /7b) /7 (c /7d). Note in the ZBDD diagram that the nodes with
two arcs pointing to the same node weren’t remdikedit would be with BDD. But
nodes in ZBDD can still be removed when the nemielation rule is applied.

BDDs are an efficient way to represent boolean tdas Often, they provide a
much more concise representation compared to dldéitmal representations, such as
conjunctive and disjunctive normal forms. BDDs atgo a canonical representation
for boolean formulas. This means that two booleamélas are logically equivalent
if and only if its BDDs are isomorphic. This propesimplifies the execution of
frequent operations, like checking the equivalesfa®vo formulas.



However, BDD has drawbacks. The most significantelsted to the order in
which variables appear. Given a boolean formula,silze of the corresponding BDD
is highly dependent on the ordering. It can groewnfrinear to exponential according
to the number of variables of the formula. In aiddit the problem of choosing a
variable order that minimize the BDD size is NP-ptete [4]. Despite the existence
of heuristics to automatically order the variabtegy are often ordered manually.

3 Formal Concepts Extraction using BDD

When formal contexts are represented as BDDs pibssible to implement derivation
operators to work directly over this representatithus allowing FCA algorithm
independence. Unfortunately, the cost to identifg set of objects from a BDD
concept is too expensive, thus invalidating thierahtive. To overcome this problem,
algorithms to extract concepts and/or to consttluetconcept lattice available in the
literature must be adapted to handle this new fairnepresentation.

To demonstrate the feasibility of BDD, the adap#dgorithm was the Attribute
Intersections [10] because of its inherent charesties that allow a more effectively
concepts extraction from contexts with more objehemn attributes. This algorithm
implementation in BDD was divided in three primatsges (Fig. 2). In the first stage,
the construction of the context in BDD is made. Beeond stage is responsible to
extract the set of all concepts from the BDD cont&ke final stage is responsible to
identify the attributes and objects from the conseppresented in BDD. These stages
separation avoids unnecessary high cost operatibifis obtaining the concepts.

Find the Set of Intent and
Extent in Concepts
Represented in BDD

Formal Context Extract the Set of
Construction in BDD All Concepts in BDD

Fig. 2. Steps to implement the Attribute Intersection &tfon in BDD.

3.1 Formal Context Construction in BDD

To create the BDD representation, a formal contexist be converted into an
equivalent logic boolean formula. Table 1 showssample of a formal context and
its possible representation through a logic fumc{iBquation 3).

Table 1. Formal Context Examg

T f(a,8,8) = 83,8, +23,8,+2,3,8, ()
02| X | X
03 X




Note that each object is represented by a logiatimuy according to the presence
or not of its attributes. The functida,, a, a) results in a positive state (1) when an
object is present on the context. This functionnmet the negative state (0) for objects
not present in the context. Thus, any context @arepresented by a logic function.

Algorithm 1 allows the construction of BDD basedthe objects presented in the
formal context. The internal functiomsld_ithvarandbdd_nithvarare specific to the
library BuDDy [6] and are used to define the preseor not of an attribute in the
BDD, respectively. The CUDD library has it own ftioo wrappers to perform this
operation, Cudd_bddIthvar To obtain the respective negative variable, CUDD
requires the use ofudd_Notin conjunction with theCudd_bddIthvar Once the
conjunction of attributes is made forming the objdtines 7 and 9) then a disjunction
of those objects is realized (line 12) to build toatext.

Al gorithm 1. BDD construction based on the context.

in: List<phject> list
out: BDD cont ext

1: context = bddfal se

2: while !list.enpty( ) do

3: obj = list.renoveFirstject( );
4: BDD tnmp = bddtrue

5: for i=0; i<obj.attributes; i++ do
6 if obj.hasAttribute(i) then

7 tnp &= bdd_ithvar (i)

8

: el se
9: tnp &= bdd_nithvar (i)
10: endi f
11: done
12: context |=tnp
13: done

Normally, ZBDDs are constructed by converting franpreviously created BDD.
However, to maintain coherence with the Algorithmiri this work, the ZDD was
built object by object. CUDD maintains a differesttucture to operate ZBDD and
positive variables reference may be achieved usimgCudd_zddithVar Since
ZBDDs works with one’s complement, it is not possito use the standafilidd_Not
approach to obtain the negative part of a variaBlat it can be obtained by the
Cudd_zddDifffunction, using the resulting difference from a dda constant, thus
acquiring the complement.

In this work, references and dereferences of nadas made manually when the
CUDD library was used. In the other hand, the BuDDw+ wrapper was used that
allowed automatic references and dereferences deésioThe garbage collector
dereferences nodes automatically when memory ressarre claimed.

It is important to emphasize that the main objectdf this work is to show the
feasibility of BDD to represent formal contextsdainom that representation extract
the formal concepts. The feasibility is shown tlglothe manipulation of large formal
contexts. In most cases, the BDD representatioconfexts often consumes several
memory resources. However, it is not significanbwggh to invalidate this new
representation in BDD. So the BDD can be used tmaexconcepts more efficiently
than the algorithms that work directly in the tabyulepresentation.



3.2 Extracting the Set of All Concepts in BDD.

Algorithm 2 is the kernel of the Attribute Interéien algorithm, but slightly modified
to work with BDD. This implementation in BDD takeslvantage of two distinct
moments when the derivation operator is used (Bhand the intersection between
two concepts is made (Line 8). The derivation ofmeres easily implemented through
the implicit bdd_ithvar operator, which obtains a BDD representation bbbjects
with an attribute. The intersection between twooegmts is also implemented through
an implicit BDD operation,bdd_and (&). Moreover, the concepts list was
implemented as hashtableto achieve a faster verification of concepts dityli The
algorithm kernel is the same for the CUDD versiathv8DD and ZBDD.

Al gorithm 2. BDD construction based on the context.

in: BDD context
out: List<BDD> concepts

1. concepts = new LI st <BDD>

2: concept s. addConcept ( cont ext)

3: for i=0; i<attributes; i++ do

4: BDD tnpl = context & bdd_ithvar(i)
5: size = concepts. size()

6: for j=0; j<size; j++ do

7: BDD t np2 = concepts. get Concept (j)
8: BDD i ntersection = tnmpl & tnp2

9: if lconcepts.exist(intersection) then
10: concepts. add(i ntersection)

11: endi f

12: done

13: done

Unfortunately, storing all the concepts as BDDha tist reflects a very expressive
memory consumption. The algorithm was slightly nfiedi to save the concept intent
(B;) rather than the concepi( B) in BDD. From the intent seB(), one can rebuild
the concept in BDD, thereby maintaining the ess@fitke proposed Algorithm 2.

3.3 Finding the Set of Intent and Extent in Conces Represented in BDD.

This section shows how to obtain the extent anehintf the concepts represented in
BDD. Algorithm 3 is used to check if all objectgpresented by the BDD share an
attribute in common. Algorithm 4 is used to venfjpenever an object is present in
the BDD concept.

For the extraction of all objects (extent) of tlwmcept, Algorithm 4 can be used to
verify if each object that exists in the formal @®xt is present in the concept. The
same can be applied to the set of attributes tihtdmough Algorithm 3, covering all
formal context attributes checking whether or rtodyt are present in the concept.
Also, in Algorithm 4, the BuDDybdd_varleveloperation has no correspondence in
the CUDD library, but can be obtained by their nodiex value.



Algorithm 3. Verify the presence of an
attribute in a concept represented in BDD.

in: BDD concept, attr
out: presence

1. BDD tnmp = concept & bdd_ithvar(attr)
2: if tnmp == concept then

3: present = true

4: el se

5: present = fal se

6: endif

Algorithm4. Verify the presence of an object
in a concept represented in BDD.

in: BDD concept, objc
out: presence

1: BDD tnp = concept

221 =0

3: while i<objc.attributes and

4: tnp !'= {bddtrue, bddfal se} do
5: if bdd_varlevel (tnp) == i then
6: if obj.hasAttribute(i) then
7: tnp = bdd_hi gh(tnp)

8: el se

9: tnp = bdd_| ow(t np)
10: endi f
11: endi f
12: i ++
13: done
14: presence =(tnmp == bddtrue)

Although Algorithm 4 is used to identify if an objeexists in a BDD concept, it
was not used in the Attribute Intersection impletagan. As mentioned, only the
concepts intents are store in the list. With therits it is not necessary to rebuild the
BDD concept to verify objects presence. It can beeddirectly by checking if every
object has the attributes of each of the interst gptthe list.

4  Feasibility Analysis of BDD to Extract Concepts

One of the requirements to assess the represamasis of BDD to extract concepts
was to compare its performance under the same ttmmslias its tabular version. For
this reason, it was decided to implement a unigigerithm for the situations:
contexts represented in BDD (with BuDDy and CUDBPBDD (with CUDD) and by
a table. Also, several optimizations on the tabdesion were made to meet this
purpose. Moreover, SCGaz (available at http://wwipucminas.br/projetos/licap)
was the tool responsible to build all contexts usethis work. This tool allows the
construction of semi-clarified contexts, avoidirare types of attributes and objects
redundancy, like repeated objects and also emptyfudhattributes and objects.

Figure 3 shows the behavior of the Attribute Inteteons algorithm for the BDD
with BuDDy and CUDD, ZBDD and tabular version famtexts with fewer attributes



(20 to 100) and many objects (10,000 to 60,000)efisure that the BDD would not
be extremely compact, the used density for all@dstwas the minimum plus 10% of
it. Moreover, lower density values result into dealamounts of concepts, thus
making the simulations consumes less time to ere@lt software were written in
C++ and executed on a Pentium Dual Core 2.66GHk 2@b of RAM running
Linux Slackware 12.0.
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Fig. 3. Evaluation of Attribute Intersections implementedsatable, BDD and ZBDD.

The tabular version has presented an irregularedsorg behavior because of the
density, since with few attributes higher will beetdensity for these considered
simulations. In addition to that, how the incidem@re spread into the context can
explain its irregular behavior. The BDDs and ZBD&drexponential behavior, even
the CUDD version that may appear linear. Incredse dttributes may allow to



observe its exponential behavior. With more attésumore nodes will be required to
construct the BDD. Therefore, less efficient wile bthe operations in this

representation. Also, as can be seen by simulatb2€ and 30 attributes, while the
tabular version had worst time performance, the BDBRintained a very low

execution time, despite of the higher density. tBe, context BDD size is extremely
relevant to the extraction of all concepts.

The BDD with CUDD package had better performancerothe table in all
simulations, making it strongly reliable. It woub&® necessary more simulations with
higher attributes to verify if there is a threshaidwhich the table begins to be more
worthed. BDD with BuDDy and ZBDD had better perfamee over table when the
number of concepts is not superior to 70. As thewarof objects increases, greatest
has become the difference between the executioestiai BDD implementations
compared to the table. Thus, the implicit represtgont of concepts in BDD becomes
an alternative to a more efficient extraction oficepts in these conditions.

Considering now a threshold of 70 attributes, amotsimulation scenario was
created. A many-valued context was simulated witttiibutes, a fixed number of 10
attribute-values per attribute and in two situagiovith objects, 60,000 and 120,000.
This type of context has 7 attributes per objeg{<]). Table 2 and 3 presents the
spent time consumed by these situations.

Table 2. Execution time for many-valued context with |M|=f®|=60,000 and |g’|=7.

Construction of Concepts | Intent and Exten Total (s) Total
the Context (s) | Extraction (s) | Identification (s)

Table - - - 81059| 0d 22:30:57
BuDDy BDD 51 10151 9946 20148| 0d 05:35:48
CUDD BDD 192 14075 10107 24374| 0d 06:46:14
CUDD ZBDD 306 10272 9703 20281| 0d 05:38:01

Table 3. Execution time for many-valued context with |M|7J®|=120,000 and |g'|=7.

Construction of Concepts | Intent and Exten
the Context (s) Extractiorrjl (s) | Identification (s) Total (s) Total
Table - - 251283| 2d 21:48:03
BuDDy BDD 128 18345 33289 51762 0d 14:22:42
CuUDD BDD 569 36841 33043 70453 0d 19:34:13
CUDD zZBDD 629 22107 34844 57580 0d 15:59:40

For this type of context, BDD and ZBDD had outsiagdmprovement over the
tabular version. As opposed to the previous sirariat the BDD with CUDD
presented the least performance. In spare cord&®@D was proven faster, but not
enough to beat BuDDy performance. Also, CUDD reggiimore time to build the
context, possibly affecting the final BDD size. BDAith BuDDy and ZBDD had
similar execution times for contexts with 60,000eats, but taking the ICFCA'06
challenge with 120,000 objects, the difference @ute significant, over 1 hour and a
half. Compared to the table version, the differenetwveen the BuDDy version was
almost three days. Applicability to process largentexts could be achieved with the
use of a distributed version of an algorithm impdeted in BDD.

Note that the required time to identify the set eottents from the concepts
represented in BDD was very significant, as seermalgle 2 and 3. This happens



because of the used algorithm quadratic complegigtive to the number of objects.
If more efficient algorithms were used, lower corgtional times may be achieved to
process contexts. Instead of a brute force strateggheck objects presence in a
concept, another strategy could be visiting BDDeawith order to identify the objects.

5 Conclusions

The present work is related to a challenge raisaédeal CFCA'06 conference, which
refers to the manipulation of large formal contextirough the use of an implicit
representation of formal context in BDD, it has medemonstrated that this new
representation became computationally feasiblehfamdling large contexts, when
compared to the conventional manipulation of agaBlthough the BDD allows the
manipulation of contexts with a large number ofeats, it is restricted to contexts
with few attributes. Thus, if the context meets thaature, a significant efficiency can
be achieved with the application of this new alitive.

As future work, more robust FCA algorithms could &s#apted to use BDD or
ZBDD. It's essential to verify the feasibility ofl application in a fast algorithm,
like CHARM [11]. Even faster concepts extractionymriae achieved with others
algorithms applied with BDD.
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