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Abstract. This paper presents evaluation of different types of Binary Decision 
Diagrams (BDDs) applied to Formal Concept Analysis (FCA). The aim is to 
increase the FCA capability to handle large formal contexts and perform faster 
operations over different types of this data structure. The main idea is to 
represent formal context using BDDs for later extraction of the set of all formal 
concepts from this implicit representation. A comparison of a concept 
extraction algorithm using contexts implemented as table and BDD are 
presented. BDD is evaluated over two different implementation libraries, 
BuDDy and CUDD. A ZBDDs (Zero-Supressed BDDs) version of the concepts 
extraction algorithm is also provided. BDD has been evaluated based on several 
types of randomly generated synthetic contexts with large amounts of objects. 
Contexts are evaluated according to the computational time complexity 
required to build and extract the set of all concepts from it. In this work, it is 
shown that BDD could be used to deal with large formal contexts especially 
when those have few attributes and many objects. To overcome the limitations 
of having contexts with fewer attributes, one could consider vertical partitions 
of the context to be used with distributed FCA algorithms based on BDD.  
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1 Introduction 

At the International Conference on Formal Concept Analysis in Dresden (ICFCA 
2006) an open problem of "Handling large contexts" was pointed out and as an 
example was cited the challenge of "how to calculate/generate all concepts of a large 
context" (e.g. 120,000 x 70,000 objects attributes). In these cases, traditional FCA 
algorithms have high computational cost and demand high execution times, making 
the extraction of all concepts infeasible for larger contexts. 

One possible solution to deal with the problem of handling large formal contexts is 
to apply a distributed solution for the processing of contexts. Partial concepts are 
obtained for later merging through a specific operator to find the final set of concepts. 
Several authors have presented formal proposals and mathematical formalisms for 
distributed application of FCA, as can be seen in [1-3]. 



 It is clear the potential of FCA to represent and extract knowledge from a set of 
objects and attributes and it is even more clear the problem of dealing with databases 
of high dimensionality. Application in real problems often suffers from this common 
fact. In this work, an approach to meet the challenge mentioned above consists in 
applying Binary Decision Diagrams (BDDs) [4] to obtain a symbolic representation 
of a cross table (formal context) that allows a more efficient extraction of the set of all 
concepts. It will be shown that this approach is promising and that it can handle more 
efficiently with large contexts when compared with the conventional implementation 
of algorithms that handle standard tables. 

Although BDD has already been used in the FCA to represent the concept lattice 
[5], this article focus in the representation of formal contexts in BDD to achieve faster 
concepts extraction.  Different BDD libraries will be used to evaluate BDD, including 
the BuDDy [6] and CUDD [7] package. Both support several variable reordering 
methods and present a C++ interface that reference nodes automatically and 
dereference them accordingly by the garbage collector. In addition, CUDD has built-
in Zero-Suppressed BDDs [8] capabilities that were also evaluated in this work. 

This article is organized in five sections. In the second section, the main concepts 
of the FCA and BDD are reviewed. In the third section, examining the representation 
of formal contexts through BDD and the extraction of concepts from this implicit 
representation is discussed. In the fourth section, BDD is evaluated over several large 
formal contexts. In the last section, the conclusions and future works are pointed out. 

2 Formal Context 

2.1 Formal Concept Analysis 

Formal Context. Formal contexts have the notation K:=(G, M, I), where G is a set of 
objects (rows headers), M is a set of attributes (columns headers) and I is an incidence 
relation (I ⊆ G × M). If an object g ∈ G and an attribute m ∈ M are in the relation I, it 
is represented by (g, m) ∈ I or gIm and is read as “the object g has the attribute m”. 

Given a set of objects A ⊆ G from a formal context K:=(G, M, I), it could be asked 
which attributes from M are common to all those objects. Similarly, it could be asked, 
for a set B ⊆ M, which objects have the attributes from B. These questions define the 
derivation operators, which are formally defined as:  

A’:=  {m ∈ M | gIm ∀ g ∈ A} ;  B’:= {g ∈ G | gIm ∀ m ∈ B} (1) 

A special case of derivate sets occurs when empty sets of objects or attribute are 
considered to be derivate: 

A ⊆ G = Ø ⇒  A’:=M ; B ⊆ M = Ø⇒  B’:=G  (2) 

Formal Concept. Formal concepts are pairs (A, B), where A ⊆ G (called extent) and 
B ⊆ M (called intent). Each element of the extent (object) has all the elements of the 
intent (attributes) and, consequently, each element of the intent is an attribute of all 



objects of the extent. The set of all formal concepts in a formal context has the 
notation B(G, M, I). Since that a cross table representing a formal context is given, 
algorithms can be applied in order to determine its formal concepts and its lattice [9]. 

2.2 Binary Decision Diagrams 

Binary decision diagrams are a canonical representation of boolean formulas [4].  The 
BDD is obtained from a binary decision tree by merging identical subtrees and 
eliminating nodes with identical left and right siblings. The resulting structure is a 
graph rather than a tree in which nodes are eliminated and substructures are shared. 

Formally, a BDD is a directed acyclic graph with two types of vertex: non-terminal 
and terminal. Each non-terminal vertex is a distinct variable of the corresponding 
boolean formula. Also, each vertex has two outgoing arcs directed toward two 
children, corresponding to the case where variable is 0 (left) and 1 (right). A BDD has 
two terminal vertices labeled by 0 and 1, representing the truth-value of the formula 
false and true, respectively.  For every truth assignment to the boolean variables of the 
formula, there is a corresponding path from root to a terminal vertex. 

Zero-Suppressed BDD (ZBDD) is a graph representation similar to a BDD. ZBDD 
also represents boolean formulas by elimination nodes and sharing subtrees. 
However, as opposed to BDD, it does not eliminate nodes whose two edges, left and 
right arcs, points to the same node. It presented another elimination rule in which all 
nodes that the right arc points to the zero terminal node are removed [8]. The BDD 
rule to merge identical subtrees is still present in ZBDD. 

   
(a) Binary Decision Tree (b) BDD  (c) ZBDD 

Fig. 1. Graph representation for formula (a ∧ b) ∨ (c ∧ d). 

Figure 1 illustrates a BDD and a ZBDD compared to a Binary Decision Tree for 
the boolean formula (a ∧ b) ∨  (c ∧ d). Note in the ZBDD diagram that the nodes with 
two arcs pointing to the same node weren’t removed like it would be with BDD. But 
nodes in ZBDD can still be removed when the new elimination rule is applied. 

BDDs are an efficient way to represent boolean formulas. Often, they provide a 
much more concise representation compared to the traditional representations, such as 
conjunctive and disjunctive normal forms. BDDs are also a canonical representation 
for boolean formulas. This means that two boolean formulas are logically equivalent 
if and only if its BDDs are isomorphic. This property simplifies the execution of 
frequent operations, like checking the equivalence of two formulas. 



However, BDD has drawbacks. The most significant is related to the order in 
which variables appear. Given a boolean formula, the size of the corresponding BDD 
is highly dependent on the ordering. It can grow from linear to exponential according 
to the number of variables of the formula. In addition, the problem of choosing a 
variable order that minimize the BDD size is NP-complete [4]. Despite the existence 
of heuristics to automatically order the variables, they are often ordered manually. 

3 Formal Concepts Extraction using BDD 

When formal contexts are represented as BDDs, it is possible to implement derivation 
operators to work directly over this representation, thus allowing FCA algorithm 
independence. Unfortunately, the cost to identify the set of objects from a BDD 
concept is too expensive, thus invalidating this alternative. To overcome this problem, 
algorithms to extract concepts and/or to construct the concept lattice available in the 
literature must be adapted to handle this new form of representation. 

To demonstrate the feasibility of BDD, the adapted algorithm was the Attribute 
Intersections [10] because of its inherent characteristics that allow a more effectively 
concepts extraction from contexts with more objects than attributes. This algorithm 
implementation in BDD was divided in three primary stages (Fig. 2). In the first stage, 
the construction of the context in BDD is made. The second stage is responsible to 
extract the set of all concepts from the BDD context. The final stage is responsible to 
identify the attributes and objects from the concepts represented in BDD. These stages 
separation avoids unnecessary high cost operations while obtaining the concepts. 

 

 

Fig. 2. Steps to implement the Attribute Intersection algorithm in BDD. 

3.1 Formal Context Construction in BDD 

To create the BDD representation, a formal context must be converted into an 
equivalent logic boolean formula. Table 1 shows an example of a formal context and 
its possible representation through a logic function (Equation 3). 

Table 1. Formal Context Example.

 a1 a2 a3 
o1 X  X 
o2 X X  
o3  X   

321321321321 ),,( aaaaaaaaaaaaf ++=  (3) 

 



Note that each object is represented by a logic equation, according to the presence 
or not of its attributes. The function f(a1, a2, a3) results in a positive state (1) when an 
object is present on the context. This function returns the negative state (0) for objects 
not present in the context. Thus, any context can be represented by a logic function. 

Algorithm 1 allows the construction of BDD based on the objects presented in the 
formal context. The internal functions bdd_ithvar and bdd_nithvar are specific to the 
library BuDDy [6] and are used to define the presence or not of an attribute in the 
BDD, respectively. The CUDD library has it own function wrappers to perform this 
operation, Cudd_bddIthvar. To obtain the respective negative variable, CUDD 
requires the use of Cudd_Not in conjunction with the Cudd_bddIthvar. Once the 
conjunction of attributes is made forming the objects (lines 7 and 9) then a disjunction 
of those objects is realized (line 12) to build the context. 

 
Algorithm 1. BDD construction based on the context. 

in:  List<Object> list 
out: BDD context 
 1: context = bddfalse 
 2: while !list.empty( ) do 
 3:   obj = list.removeFirstObject( ); 
 4:   BDD tmp = bddtrue 
 5:   for i=0; i<obj.attributes; i++ do 
 6:     if obj.hasAttribute(i) then 
 7:       tmp &= bdd_ithvar(i) 
 8:     else 
 9:       tmp &= bdd_nithvar(i) 
10:     endif 
11:   done 
12:   context |= tmp 
13: done 

 
Normally, ZBDDs are constructed by converting from a previously created BDD. 

However, to maintain coherence with the Algorithm 1, in this work, the ZDD was 
built object by object. CUDD maintains a different structure to operate ZBDD and 
positive variables reference may be achieved using the Cudd_zddIthVar. Since 
ZBDDs works with one’s complement, it is not possible to use the standard Cudd_Not 
approach to obtain the negative part of a variable. But it can be obtained by the 
Cudd_zddDiff function, using the resulting difference from a 1-node constant, thus 
acquiring the complement.  

In this work, references and dereferences of nodes were made manually when the 
CUDD library was used. In the other hand, the BuDDy C++ wrapper was used that 
allowed automatic references and dereferences of nodes. The garbage collector 
dereferences nodes automatically when memory resources are claimed. 

It is important to emphasize that the main objective of this work is to show the 
feasibility of BDD to represent formal contexts, and from that representation extract 
the formal concepts. The feasibility is shown through the manipulation of large formal 
contexts. In most cases, the BDD representation of contexts often consumes several 
memory resources. However, it is not significant enough to invalidate this new 
representation in BDD. So the BDD can be used to extract concepts more efficiently 
than the algorithms that work directly in the tabular representation. 



3.2 Extracting the Set of All Concepts in BDD. 

Algorithm 2 is the kernel of the Attribute Intersection algorithm, but slightly modified 
to work with BDD. This implementation in BDD takes advantage of two distinct 
moments when the derivation operator is used (Line 4) and the intersection between 
two concepts is made (Line 8). The derivation operator is easily implemented through 
the implicit bdd_ithvar operator, which obtains a BDD representation of all objects 
with an attribute. The intersection between two concepts is also implemented through 
an implicit BDD operation, bdd_and (&). Moreover, the concepts list was 
implemented as a hashtable to achieve a faster verification of concepts duplicity. The 
algorithm kernel is the same for the CUDD version with BDD and ZBDD. 
 

Algorithm 2. BDD construction based on the context. 

in:  BDD context 
out: List<BDD> concepts 
 1: concepts = new List<BDD> 
 2: concepts.addConcept(context) 
 3: for i=0; i<attributes; i++ do 
 4:   BDD tmp1 = context & bdd_ithvar(i) 
 5:   size = concepts.size() 
 6:   for j=0; j<size; j++ do 
 7:     BDD tmp2 = concepts.getConcept(j) 
 8:     BDD intersection = tmp1 & tmp2 
 9:     if !concepts.exist(intersection) then 
10:       concepts.add(intersection) 
11:     endif 
12:   done 
13: done 

 
Unfortunately, storing all the concepts as BDD in the list reflects a very expressive 

memory consumption. The algorithm was slightly modified to save the concept intent 
(Bi) rather than the concept (Ai, Bi) in BDD. From the intent set (Bi), one can rebuild 
the concept in BDD, thereby maintaining the essence of the proposed Algorithm 2.  

3.3 Finding the Set of Intent and Extent in Concepts Represented in BDD. 

This section shows how to obtain the extent and intent of the concepts represented in 
BDD. Algorithm 3 is used to check if all objects represented by the BDD share an 
attribute in common. Algorithm 4 is used to verify whenever an object is present in 
the BDD concept. 

For the extraction of all objects (extent) of the concept, Algorithm 4 can be used to 
verify if each object that exists in the formal context is present in the concept. The 
same can be applied to the set of attributes (intent), through Algorithm 3, covering all 
formal context attributes checking whether or not they are present in the concept. 
Also, in Algorithm 4, the BuDDy bdd_varlevel operation has no correspondence in 
the CUDD library, but can be obtained by their node index value. 

 
 



Algorithm 3. Verify the presence of an 
attribute in a concept represented in BDD. 

in:  BDD concept, attr 
out: presence 
 1: BDD tmp = concept & bdd_ithvar(attr) 
 2: if tmp == concept then 
 3:   present = true 
 4: else 
 5:   present = false 
 6: endif 

 
Algorithm 4. Verify the presence of an object 
in a concept represented in BDD. 

in:  BDD concept, objc 
out: presence 
 1: BDD tmp = concept 
 2: i = 0 
 3: while i<objc.attributes and 
 4:       tmp != {bddtrue, bddfalse} do 
 5:   if bdd_varlevel(tmp) == i then 
 6:     if obj.hasAttribute(i) then 
 7:       tmp = bdd_high(tmp) 
 8:     else 
 9:       tmp = bdd_low(tmp) 
10:     endif 
11:   endif 
12:   i++ 
13: done 
14: presence =(tmp == bddtrue) 

 
Although Algorithm 4 is used to identify if an object exists in a BDD concept, it 

was not used in the Attribute Intersection implementation. As mentioned, only the 
concepts intents are store in the list. With the intents it is not necessary to rebuild the 
BDD concept to verify objects presence. It can be done directly by checking if every 
object has the attributes of each of the intent sets on the list. 

4 Feasibility Analysis of BDD to Extract Concepts 

One of the requirements to assess the representativeness of BDD to extract concepts 
was to compare its performance under the same conditions as its tabular version. For 
this reason, it was decided to implement a unique algorithm for the situations: 
contexts represented in BDD (with BuDDy and CUDD), ZBDD (with CUDD) and by 
a table. Also, several optimizations on the table version were made to meet this 
purpose. Moreover, SCGaz (available at http://www.inf.pucminas.br/projetos/licap) 
was the tool responsible to build all contexts used in this work. This tool allows the 
construction of semi-clarified contexts, avoiding some types of attributes and objects 
redundancy, like repeated objects and also empty and full attributes and objects. 

Figure 3 shows the behavior of the Attribute Intersections algorithm for the BDD 
with BuDDy and CUDD, ZBDD and tabular version for contexts with fewer attributes 



(20 to 100) and many objects (10,000 to 60,000). To ensure that the BDD would not 
be extremely compact, the used density for all contexts was the minimum plus 10% of 
it. Moreover, lower density values result into smaller amounts of concepts, thus 
making the simulations consumes less time to execute. All software were written in 
C++ and executed on a Pentium Dual Core 2.66GHz with 2Gb of RAM running 
Linux Slackware 12.0. 

 

 

 

Fig. 3. Evaluation of Attribute Intersections implemented as a table, BDD and ZBDD. 

The tabular version has presented an irregular decreasing behavior because of the 
density, since with few attributes higher will be the density for these considered 
simulations. In addition to that, how the incidences are spread into the context can 
explain its irregular behavior. The BDDs and ZBDD had exponential behavior, even 
the CUDD version that may appear linear. Increase the attributes may allow to 



observe its exponential behavior. With more attributes, more nodes will be required to 
construct the BDD. Therefore, less efficient will be the operations in this 
representation. Also, as can be seen by simulations of 20 and 30 attributes, while the 
tabular version had worst time performance, the BDD maintained a very low 
execution time, despite of the higher density. So, the context BDD size is extremely 
relevant to the extraction of all concepts. 

The BDD with CUDD package had better performance over the table in all 
simulations, making it strongly reliable. It would be necessary more simulations with 
higher attributes to verify if there is a threshold in which the table begins to be more 
worthed. BDD with BuDDy and ZBDD had better performance over table when the 
number of concepts is not superior to 70. As the amount of objects increases, greatest 
has become the difference between the execution times of BDD implementations 
compared to the table. Thus, the implicit representation of concepts in BDD becomes 
an alternative to a more efficient extraction of concepts in these conditions. 

Considering now a threshold of 70 attributes, another simulation scenario was 
created. A many-valued context was simulated with 7 attributes, a fixed number of 10 
attribute-values per attribute and in two situations with objects, 60,000 and 120,000. 
This type of context has 7 attributes per object (|g’|=7). Table 2 and 3 presents the 
spent time consumed by these situations. 

Table 2. Execution time for many-valued context with |M|=70, |G|=60,000 and |g’|=7. 

 
Construction of 
the Context (s) 

Concepts 
Extraction (s) 

Intent and Extent 
Identification (s) 

Total (s) Total 

Table - - - 81059 0d 22:30:57 
BuDDy BDD 51 10151 9946 20148 0d 05:35:48 
CUDD BDD 192 14075 10107 24374 0d 06:46:14 

CUDD ZBDD 306 10272 9703 20281 0d 05:38:01 

Table 3. Execution time for many-valued context with |M|=70, |G|=120,000 and |g’|=7. 

 
Construction of 
the Context (s) 

Concepts 
Extraction (s) 

Intent and Extent 
Identification (s) 

Total (s) Total 

Table - - - 251283 2d 21:48:03 
BuDDy BDD 128 18345 33289 51762 0d 14:22:42 
CUDD BDD 569 36841 33043 70453 0d 19:34:13 

CUDD ZBDD 629 22107 34844 57580 0d 15:59:40 

 
For this type of context, BDD and ZBDD had outstanding improvement over the 

tabular version. As opposed to the previous simulations, the BDD with CUDD 
presented the least performance. In spare context, ZBDD was proven faster, but not 
enough to beat BuDDy performance. Also, CUDD required more time to build the 
context, possibly affecting the final BDD size. BDD with BuDDy and ZBDD had 
similar execution times for contexts with 60,000 objects, but taking the ICFCA’06 
challenge with 120,000 objects, the difference was quite significant, over 1 hour and a 
half. Compared to the table version, the difference between the BuDDy version was 
almost three days. Applicability to process larger contexts could be achieved with the 
use of a distributed version of an algorithm implemented in BDD.  

Note that the required time to identify the set of extents from the concepts 
represented in BDD was very significant, as seen by Table 2 and 3. This happens 



because of the used algorithm quadratic complexity relative to the number of objects. 
If more efficient algorithms were used, lower computational times may be achieved to 
process contexts. Instead of a brute force strategy to check objects presence in a 
concept, another strategy could be visiting BDD nodes in order to identify the objects. 

5 Conclusions 

The present work is related to a challenge raised at the ICFCA’06 conference, which 
refers to the manipulation of large formal contexts. Through the use of an implicit 
representation of formal context in BDD, it has been demonstrated that this new 
representation became computationally feasible for handling large contexts, when 
compared to the conventional manipulation of a table. Although the BDD allows the 
manipulation of contexts with a large number of objects, it is restricted to contexts 
with few attributes. Thus, if the context meets this feature, a significant efficiency can 
be achieved with the application of this new alternative. 

As future work, more robust FCA algorithms could be adapted to use BDD or 
ZBDD. It’s essential to verify the feasibility of BDD application in a fast algorithm, 
like CHARM [11]. Even faster concepts extraction may be achieved with others 
algorithms applied with BDD. 
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