

Linguagens Formais e Autômatos

Máquinas de Turing (MT)

Andrei Rimsa Álvares andrei@cefetmg.br

Sumário

- Introdução
- Máquinas de Turing
- Propriedades
 - Linguagens Recursivas
 - Linguagens Recursivamente Enumeráveis

INTRODUÇÃO

Linguagens Formais e Autômatos

Introdução

- Os autômatos finitos e autômatos de pilha, embora importantes do ponto de vista prático e teórico, possuem limitações quanto ao poder de reconhecimento
- Mesmo linguagens relativamente simples n\u00e3o podem ser reconhecidas por essas m\u00e1quinas, como
 - $\{xx \mid x \in \{a, b\}^*\}$
 - $\{a^n b^n c^n \mid n \ge 0\}$
 - $\{a^n b^k c^n d^k \mid n, k \ge 0\}$

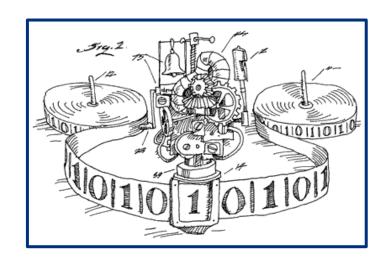
Máquinas de Turing

 As máquinas de Turing foram propostas por volta de 1930 pelo matemático inglês Alan Turing

Dica: o filme **O Jogo da Imitação** mostra as contribuições de Turing para desvendar mensagens cifradas pela máquina Enigma

- Esse tipo de máquina é tão poderosa que até hoje não se conseguiu nenhum outro tipo de máquina que tenha maior poder computacional
 - Nem mesmo os computadores atuais possuem poder computacional maior que o das máquinas de Turing

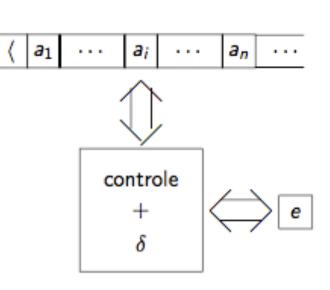
MÁQUINAS DE TURING (MT)



Linguagens Formais e Autômatos

O que é uma Máquina de Turing

- Uma máquina de Turing (MT) opera sobre uma fita que, ao contrário dos AFs e APs, pode-se ler e escrever nela
- A fita é
 - Dividida em células que comportam apenas um símbolo cada uma
 - Limitada à esquerda, possui um símbolo especial para marcar seu início que não pode repetir em nenhuma outra célula
 - Ilimitada à direita
- A máquina possui
 - Um cabeçote de leitura que pode se mover para a direita e para a esquerda
 - Um registrador que contém o estado atual
 - Um conjunto de instruções (δ)
 - Uma unidade de controle



Notação:

 $\delta(e, a) = [e', b, d]$

Função de Transição

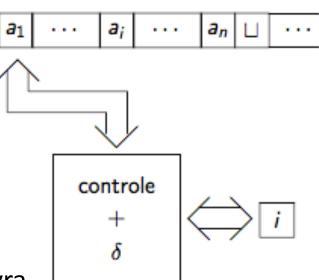
- A função de transição é uma função parcial, que dá, para cada par (e, a), onde e é um estado e a é um símbolo do alfabeto, uma tripla [e', b, d], onde
 - -e' é o próximo estado
 - b é o símbolo a substituir a
 - d é a direção, esquerda (E) ou direita (D), em que o cabeçote deve se mover

Cuidado

- Quando $a=\langle$, obrigatoriamente $b=\langle$ e d=D ou $\delta(e,\langle)$ é indefinido (não se pode mover o cabeçote para a esquerda da primeira célula)
- O símbolo (, além de não poder ser escrito em qualquer outra célula da fita, não pode ser apagado da primeira célula da fita

Configuração Inicial

- O registrador da máquina contém o estado inicial (i)
- A fita contém
 - A primeira célula que contém (marcador de início)
 - A palavra de entrada a partir da sua segunda célula $(a_1...a_n)$
 - O restante da fita contém somente o símbolo ⊔ (branco ou "célula vazia")
- O cabeçote é posicionado no início da palavra de entrada (segunda célula)

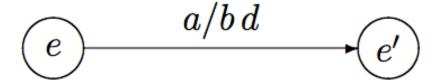


Algoritmo

- **Enquanto** $\delta(e, a)$ é definido, onde e é o estado no registrador da máquina, a é o símbolo sob o cabeçote e $\delta(e, a) = [e', b, d]$
 - Colocar no registrador o estado e'
 - Substitui-se a por b na posição sob o cabeçote
 - Avança-se o cabeçote para a célula da esquerda, se $d=\mathrm{E}$, ou para a direita, se $d=\mathrm{D}$

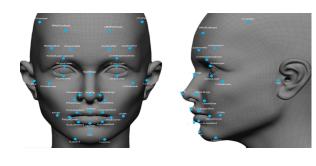
Determinismo

- A Máquina de Turing é determinística
 - Para cada estado e e símbolo a há, no máximo, uma transição especificada pela função de transição
- Uma transição $\delta(e, a) = [e', b, d]$, onde $d \in \{E, D\}$, será representada da seguinte maneira em um diagrama de estados



Aplicações

Uma Máquina de Turing pode ser usada como

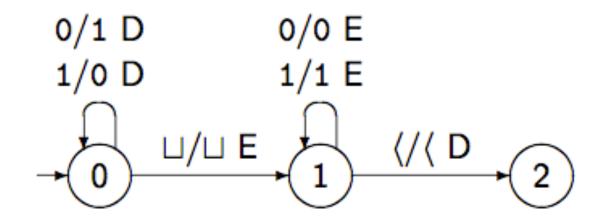


Reconhecedora de linguagens

– Transdutora de linguagens: $\Sigma^* \to \Gamma^*$ (recebe uma palavra w na entrada e produz na própria fita uma saída)

Um Primeiro Exemplo

• Uma Máquina de Turing que recebe como entrada uma palavra de $\{0, 1\}^*$ e produz seu complemento como saída (inverso)



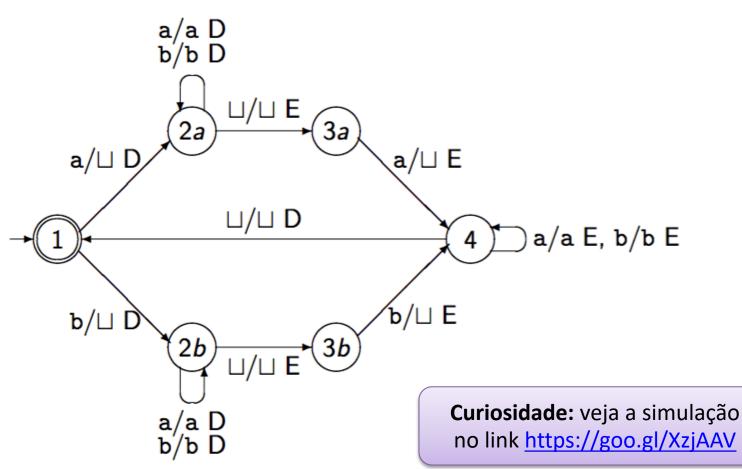
Curiosidade: veja a simulação no link https://goo.gl/3bj613

Máquina de Turing

- **Definição:** uma Máquina de Turing é uma óctupla $(E, \Sigma, \Gamma, \langle, \sqcup, \delta, i, F)$, em que
 - E é um conjunto finito de estados
 - $-\Sigma \subseteq \Gamma$ é o alfabeto de entrada
 - Γ é o alfabeto da fita
 - \langle é o primeiro símbolo da fita (\langle $\in \Gamma \Sigma$)
 - $\sqcup \acute{e}$ o branco ($\sqcup \in \Gamma \Sigma, \sqcup = \langle \rangle$
 - $-\delta: E \times \Gamma \to E \times \Gamma \times \{E, D\}$ é a função de transição
 - i é o estado inicial
 - -F é o conjunto de estados finais

Exemplo

• Máquina de Turing que reconhece $L = \{ww^R \mid w \in \{a, b\}^*\}$



Configuração Instantânea

- Uma configuração instantânea de uma Máquina de Turing é um par $[e, x\underline{a}y]$, em que
 - $-e \in E$ é o estado atual
 - $-x \in \Gamma^*$ é a palavra situada à esquerda do cabeçote de leitura
 - $-a \in \Gamma$ é o símbolo sob o cabeçote
 - $-y \in \Gamma^*$ é a palavra à direita do cabeçote até o último símbolo diferente de \sqcup
- A configuração inicial é
 - [i, $\langle \underline{a}_1 a_2 ... a_n \rangle$], caso a palavra de entrada seja $a_1 a_2 ... a_n$
 - [i, $\langle \sqcup$], caso a palavra de entrada seja λ

- Como uma MT pode entrar em loop, não será definida uma função que retorne o estado alcançado a partir de uma certa configuração instantânea
 - A relação ⊢ será definida mais à frente
- Para facilitar a definição, será utilizada a função $\pi:\Gamma^* \to \Gamma^*$

$$\pi(w) = \begin{cases} \lambda & \text{, se } w \in \{\sqcup\}^* \\ xa & \text{, se } w = xay, a \in \Gamma - \{\sqcup\} \text{ e } y \in \{\sqcup\}^* \end{cases}$$

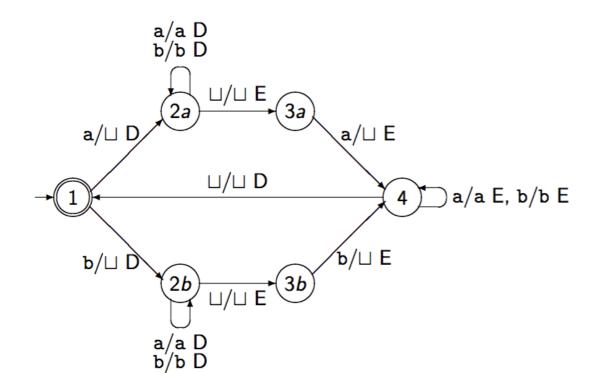
Informalmente, $\pi(w)$ elimina de w os brancos à direita do último símbolo diferente de branco

- Definição: A relação $\vdash \subseteq (E \times \Gamma^+)^2$, para uma MT M, é tal que para todo $e \in E$ e todo $a \in \Gamma$
 - a) se $\delta(e, a) = [e', b, D]$, então $[e, x\underline{a}cy] \vdash [e', xb\underline{c}y]$ para $c \in \Gamma$; $[e, x\underline{a}] \vdash [e', xb\underline{\sqcup}]$
 - b) se $\delta(e, a) = [e', b, E]$, então $[e, xc\underline{a}y] \vdash [e', x\underline{c}\pi(by)]$ para $c \in \Gamma$
 - c) se $\delta(e, a)$ é indefinido, então não existe configuração f tal que $[e, x\underline{a}y] \vdash f$

- Como usual, serão definidos
 - O fecho reflexivo e transitivo de ⊢ será denotado por ⊢
 - Configuração instantânea f é obtida a partir de f percorrendo-se $n \ge 0$ transições: $f \stackrel{\text{n}}{\vdash} f'$

Quando as palavras são aceitas?

- Por exemplo, para a MT do exemplo anterior
 - $-[1,\langle\underline{\sqcup}] \stackrel{\circ}{\vdash} [1,\langle\underline{\sqcup}] e \delta(1,\underline{\sqcup})$ é indefinido
 - $-[1, \langle \underline{a}ab] \stackrel{4}{\vdash} [3a, \langle \sqcup a\underline{b}] \in \delta(3a, b)$ é indefinido
 - $-[1,\langle\underline{a}bba]\stackrel{14}{\vdash}[1,\langle\sqcup\sqcup\underline{\sqcup}]\ e\ \delta(1,\sqcup)\ \acute{e}\ indefinido$



Quando as palavras são aceitas?

Linguagem Reconhecida

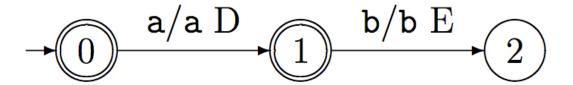
• **Definição:** A linguagem reconhecida por uma MT $M = (E, \Sigma, \Gamma, \langle, \sqcup, \delta, i, F)$ é

$$L(M) = \{ w \in \Sigma^* \mid [i, \langle \underline{\mathbf{w}}] \vdash^* [e, \underline{\mathbf{xay}}], \delta(e, a) \text{ \'e indefinido e } e \in F \}$$

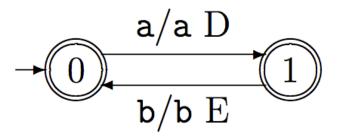
A expressão $[i, \langle \underline{w}]$ é usada para denotar a configuração instantânea inicial

Exemplos de Reconhecimento

- Considere a linguagem sobre $\Sigma = \{a, b, c\}$ que não tem ab como prefixo, ou seja: $L = \{a, b, c\}^* (\{ab\}\{a, b, c\}^*)$
 - Máquina que sempre para



Máquina que para se aceita



Diferente dos AFs e APs, não é necessário consumir toda a palavra de entrada para que ela seja aceita

Classe de Linguagens

- As definições a seguir dão nomes para as classes das linguagens que podem ser reconhecidas por MTs
 - Linguagem Recursivamente Enumerável (LRE): uma linguagem é dita ser uma linguagem recursivamente enumerável (LRE) se existe uma MT que a reconhece
 - Linguagem Recursiva: uma linguagem é dita ser uma linguagem recursiva se existe uma MT que a reconhece e que para para todas as palavras do alfabeto de entrada

Se existe uma MT que reconhece uma linguagem L, necessariamente existe uma MT que sempre para e que reconhece L?

Modelos Alternativos de Reconhecimento

- Existem outros dois modelos alternativos de reconhecimento que são úteis em certos contextos
 - Por estado final: seja uma MT $M = (E, \Sigma, \Gamma, \langle, \sqcup, \delta, i, F)$. A linguagem reconhecida por M por estado final é

$$L_F(M) = \{ w \in \Sigma^* \mid [i, \langle \underline{w}] \stackrel{*}{\vdash} [e, x\underline{a}y], a \in \Gamma \text{ e } e \in F \}$$

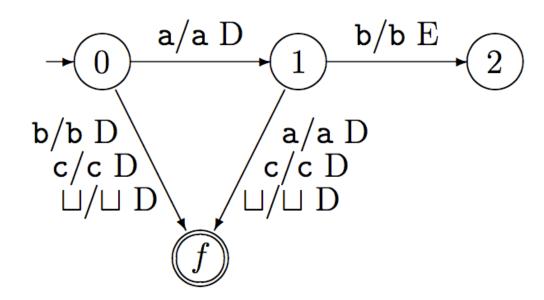
– Por parada: seja uma MT $M = (E, \Sigma, \Gamma, \langle, \sqcup, \delta, i)$. A linguagem reconhecida por M por parada é

$$L_P(M) = \{ w \in \Sigma^* \mid [i, \langle \underline{w}] \stackrel{*}{\vdash} [e, x\underline{a}y], a \in \Gamma \in \delta(e, a) \text{ \'e indefinido} \}$$

Exemplo

• Exemplo de reconhecimento por estado final:

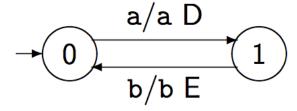
$$L = \{a, b, c\}^* - (\{ab\}\{a, b, c\}^*)$$



Exemplo

• Exemplo de reconhecimento por parada:

$$L = \{a, b, c\}^* - (\{ab\}\{a, b, c\}^*)$$



Equivalência entre os Modelos de Reconhecimento

• Seja L uma linguagem. As seguintes afirmativas são **equivalentes**

- a) L é uma LRE
- b) L pode ser reconhecida por uma MT por estado final
- c) L pode ser reconhecida por uma MT por parada

Será demonstrado que as seguintes transformações são possíveis:

(a)
$$\rightarrow$$
 (b), (b) \rightarrow (c), (c) \rightarrow (a)

$$(a) \rightarrow (b)$$

- Seja $M = (E, \Sigma, \Gamma, \langle, \sqcup, \delta, i, F)$ uma MT padrão; uma máquina equivalente à M, que reconhece por estado final, seria $M' = (E \cup \{f\}, \Sigma, \Gamma, \langle, \sqcup, \delta', i, \{f\}), f \notin F$, onde
 - a) para todo $(e, a) \in E \times \Gamma$, se $\delta(e, a)$ é definido, então $\delta'(e, a) = \delta(e, a)$
 - b) para todo $(e, a) \in F \times \Gamma$, se $\delta(e, a)$ é indefinido, $\delta'(e, a) = [f, a, D]$
 - c) para todo $(e, a) \in (E F) \times \Gamma$, se $\delta(e, a)$ é indefinido, $\delta'(e, a)$ é indefinido
 - d) para todo $a \in \Gamma$, $\delta'(f, a)$ é indefinido

Observe que o cabeçote se move para a direita **(b)**, prevendo o caso em que $a = \langle$

$$(b) \rightarrow (c)$$

- Seja $M = (E, \Sigma, \Gamma, \langle, \sqcup, \delta, i, F)$ uma MT que reconhece por estado final; uma máquina equivalente à M, que reconhece por parada, seria $M' = (E \cup \{l\}, \Sigma, \Gamma, \langle, \sqcup, \delta', i), l \notin E$, onde
 - a) para todo $(e, a) \in (E F) \times \Gamma$: se $\delta(e, a)$ é definido, então $\delta'(e, a) = \delta(e, a)$, senão $\delta'(e, a) = [l, a, D]$
 - b) para todo $a \in \Gamma$, $\delta'(l, a) = [l, a, D]$
 - c) para todo $(e, a) \in F \times \Gamma$, $\delta'(e, a)$ é indefinido

Observe que o cabeçote é movido indefinidamente para a direita ao ser atingido o estado *l* (b)

$$(c) \rightarrow (a)$$

• Seja $M = (E, \Sigma, \Gamma, \langle, \sqcup, \delta, i)$ uma MT que reconhece por parada; uma MT normal equivalente à M é obtida simplesmente tornando todos os estados de M estados finais: $M' = (E, \Sigma, \Gamma, \langle, \sqcup, \delta', i, E)$

Dica: quando não se disser o contrário, assume-se que o reconhecimento se dá **por parada em estado final**

PROPRIEDADES: LINGUAGENS RECURSIVAS E LINGUAGENS RECURSIVAMENTE ENUMERÁVEIS

Linguagens Formais e Autômatos

Propriedades das LREs e Linguagens Recursivas

- A classe das linguagens recursivas é fechada sob
 - União
 - Interseção
 - Complemento
 - Concatenação
 - Fecho de Kleene
- A classe das linguagens recursivamente enumeráveis (LREs) é fechada sob
 - União
 - Interseção
 - Concatenação
 - Fecho de Kleene

Cuidado: A classe das LREs **não é** fechada sob o complemento

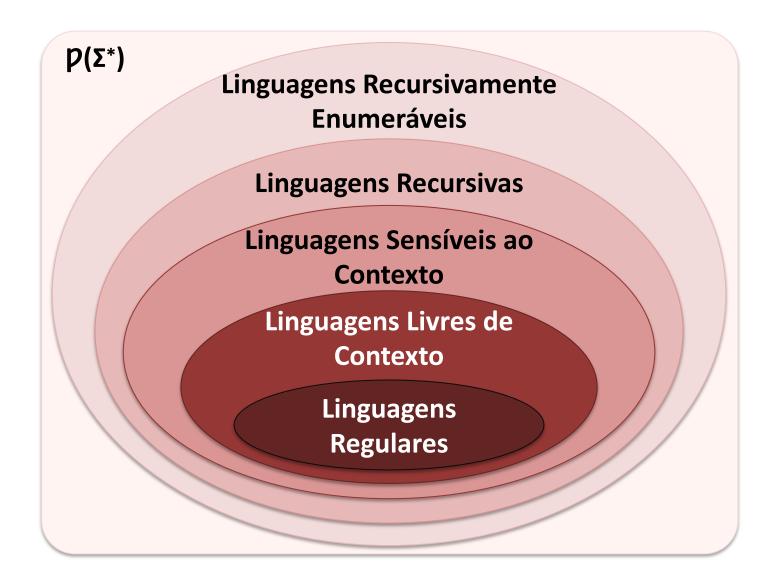
Linguagens Não LRE

- Existem linguagens que não são LRE, considere o seguinte raciocínio
 - Seja R uma linguagem sobre Σ cujas palavras representam todas as MTs
 - Como Σ^* é um conjunto enumerável e $R \subseteq \Sigma^*$, R é enumerável
 - Ou seja, o conjunto das MTs é enumerável, independentemente da linguagem usada para representá-las
 - O conjunto de todas as linguagens de alfabeto Σ , $P(\Sigma^*)$, não é enumerável
 - Como o conjunto das MTs é enumerável e o conjunto das linguagens não, segue-se que não há como associar cada linguagem a uma MT
 - Não existe uma função injetiva de $P(\Sigma^*)$ para R
 - Logo, existem mais linguagens do que MTs

Um Teorema Importante

- Teorema: $\operatorname{se} L \operatorname{e} \overline{L}$ são LRE, então L é recursiva
 - Em particular, segue-se a contrapositiva
 - Se L é LRE e L não é recursiva, então \overline{L} não é LRE

Espaço das Linguagens em $P(\Sigma^*)$



ISSO É TUDO, PESSOAL!

Linguagens Formais e Autômatos