

Linguagens Formais e Autômatos

Gramáticas Livres de Contexto (GLCs)

Andrei Rimsa Álvares andrei@cefetmg.br

Sumário

- Gramáticas livres de contexto (GLCs)
- Derivações e ambiguidade
- Manipulação de GLCs

GRAMÁTICAS LIVRES DE CONTEXTO (GLCS)

Linguagens Formais e Autômatos

BNF

 Exemplo de uma gramática livre de contexto em notação BNF (Backus-Naur Form) para definir parte da sintaxe de uma LP

```
→ (declarações); (lista-de-cmds).
(programa)
(lista-de-cmds)
                  → (comando); (lista-de-cmds)
(comando)
                  → (cmd-enquanto)
                          l (cmd-se)
                          | (cmd-atribuição)
                  → enquanto (exp-lógica)
(cmd-enguanto)
                      faça (lista-de-cmds) fimenquanto
                  → se ⟨exp-lógica⟩ então
⟨cmd-se⟩
                      (lista-de-cmds) (senaoses) (senao) fimse
                  → senão se ⟨exp-lógica⟩ então
(senaoses)
                      (lista-de-cmds) (senaoses)
```

O lado esquerdo da regra possui apenas uma variável, já o lado direito qualquer combinação de variáveis e terminais

Gramática Livre de Contexto

• **Definição:** Uma gramática livre de contexto (GLC) é uma gramática (V, Σ ,R,P), em que cada regra tem a forma $X \to w$, onde $X \in V$ e $w \in (V \cup \Sigma)^*$

Repare que uma **Gramática Regular** é um caso especial de **Gramática Livre de Contexto**

• Exemplo: a linguagem não regular $\{0^n1^n \mid n \in N\}$ é gerada pela GLC G = ({P}, {0,1}, R, P), onde R consta das duas regras

$$P \rightarrow 0P1 \mid \lambda$$

- As palavras são geradas por n ($n \ge 0$) aplicações da regra $\mathbf{P} \to \mathbf{0P1}$, seguida de uma aplicação de $\mathbf{P} \to \lambda$

$$P \stackrel{n}{\Rightarrow} 0^{n}P1^{n} \Rightarrow 0^{n}1^{n}$$

Mais Exemplos

•
$$L = \{ w \in \{0,1\}^* \mid w = w^R \}$$

$$G=(\{P\},\,\{0,1\},\,R,\,P)$$
 , onde R consta das 5 regras
$$P \to 0P0 \mid 1P1 \mid 0 \mid 1 \mid \lambda$$

• $L = \{ w \in \{0,1\}^* \mid o \text{ número de 0s é igual ao número de 1s em w } \}$

 $G = (\{P\}, \{0,1\}, R, P)$, onde R consta das 3 regras

$$P \rightarrow 0P1P \mid 1P0P \mid \lambda$$

Ainda Outro Exemplo

• Seja a GLC ($\{E, T, F\}$, $\{t, +, *, (,)\}$, R, E), para expressões aritméticas, onde R consta das regras

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid t$$

- E \rightarrow E + T | T: uma expressão aritmética (E) é formada por um ou mais termos T's somados
- $T \rightarrow T * F \mid F$: um termo (T) é formado por um ou mais fatores F's multiplicados
- $-\mathbf{F} \rightarrow (\mathbf{E}) \mid \mathbf{t}$: um fator é um terminal t ou, recursivamente, uma expressão aritmética entre parênteses

Linguagem Livre de Contexto

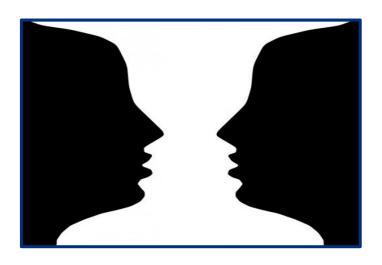
Definição: Uma linguagem é dita ser uma linguagem livre do contexto se existe uma gramática livre do contexto que a gera

Livre

de Contexto

Por que a linguagem é chamada de livre de contexto?

DERIVAÇÕES E AMBIGUIDADE



Linguagens Formais e Autômatos

Árvore de Derivações

- Uma árvore de derivação (AD) captura a essência de uma derivação, a história da obtenção de uma forma sentencial (que não depende da ordem de aplicação das regras)
- **Definição:** Seja uma GLC $G = (V, \Sigma, R, P)$. Uma árvore de derivação (AD) é construída recursivamente como se segue
 - a) Uma árvore com apenas o vértice de rótulo P é uma AD
 - b) Se $X \in V$ é rótulo de uma folha f de uma AD, então
 - i) se $X \to \lambda \in R$, então a árvore obtida acrescentando-se mais um vértice v com rótulo λ e uma aresta $\{f,v\}$ é uma AD
 - ii) se $X \to x_1 x_2 ... x_n \in R$, onde $x_1, x_2, ..., x_n \in (V \cup \Sigma)$, então a árvore obtida acrescentando-se mais n vértices $v_1, v_2, ..., v_n$ com rótulos $x_1, x_2, ..., x_n$, nesta ordem, e n arestas $\{f, v_1\}, \{f, v_2\}, ..., \{f, v_n\}, \ \text{\'e} \ \text{uma AD}$

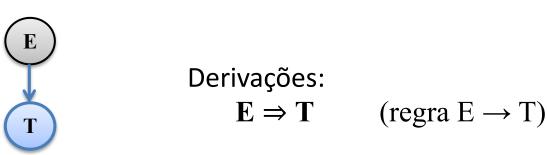
Considere a gramática a seguir

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid t$$

• A AD para t * (t + t) pode ser construída passo a passo



Qual é a próxima regra aplicável?

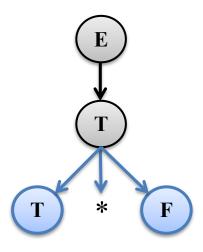
Considere a gramática a seguir

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid t$$

A AD para t * (t + t) pode ser construída passo a passo



Derivações:

$$E \Rightarrow T$$
 (regra $E \rightarrow T$)
 $\Rightarrow T * F$ (regra $T \rightarrow T * F$)

Qual regra se deve derivar agora?

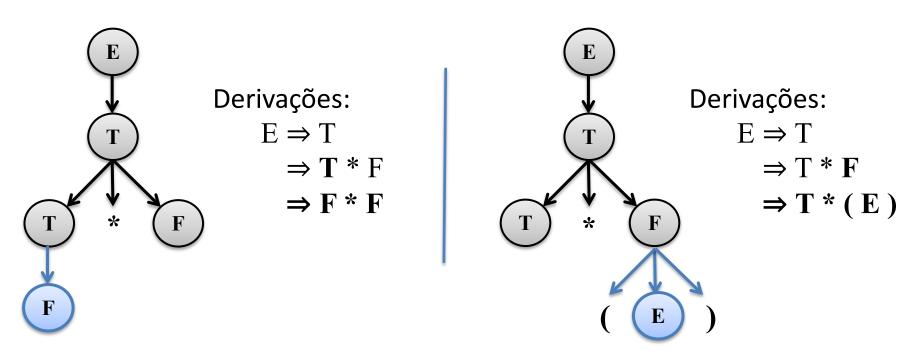
Considere a gramática a seguir

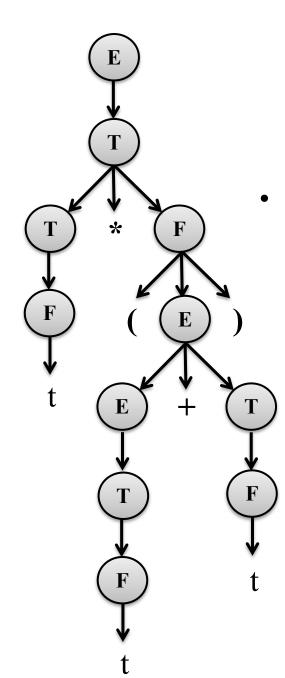
$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid t$$

• A AD para t * (t + t) pode ser construída passo a passo



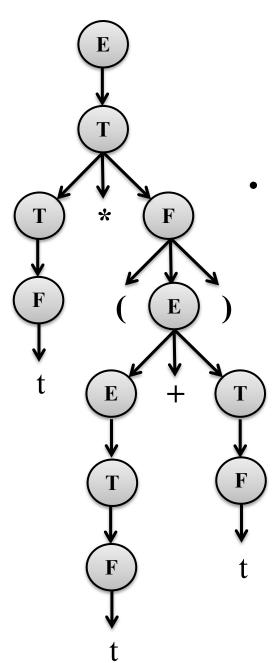


Algumas regras podem ser alternadas na derivação e ainda assim gerar a mesma AD

A árvore de derivação completa para t * (t + t)

Derivações:

$$E \Rightarrow T$$
 (regra $E \rightarrow T$)
$$\Rightarrow T * F$$
 (regra $T \rightarrow T * F$)
$$\Rightarrow F * F$$
 (regra $T \rightarrow F$)
$$\Rightarrow t * F$$
 (regra $F \rightarrow t$)
$$\Rightarrow t * (E)$$
 (regra $F \rightarrow (E)$)
$$\Rightarrow t * (E + T)$$
 (regra $E \rightarrow E + T$)
$$\Rightarrow t * (T + T)$$
 (regra $E \rightarrow T$)
$$\Rightarrow t * (F + T)$$
 (regra $E \rightarrow T$)
$$\Rightarrow t * (F + T)$$
 (regra $E \rightarrow T$)
$$\Rightarrow t * (F + T)$$
 (regra $E \rightarrow T$)
$$\Rightarrow t * (F + T)$$
 (regra $E \rightarrow T$)
$$\Rightarrow t * (F + T)$$
 (regra $E \rightarrow T$)
$$\Rightarrow t * (F + T)$$
 (regra $E \rightarrow T$)



A árvore de derivação completa para t * (t + t)

Observações

- Número de passos da derivação é o número de vértices internos
- A estrutura da AD é normalmente utilizada para associar significado
- Mais de uma AD para w ⇒ mais de um significado para w

Pode existir mais de uma derivação para uma palavra w de uma gramática G?

Ambiguidade

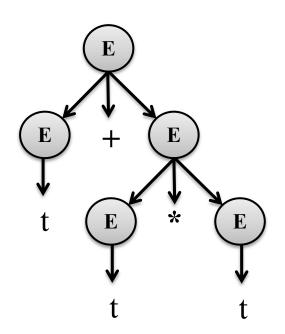
- Definição: Uma GLC é dita ambígua quando existe mais de uma AD para alguma sentença que ela gera
- Exemplo: uma GLC $G = (\{E\}, \{t, +, *, (,)\}, R, E)$ de expressões aritméticas **ambíguas**, onde R consta das regras

$$E \rightarrow E + E \mid E * E \mid (E) \mid t$$

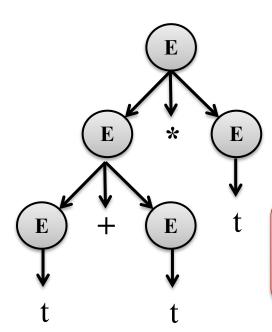
Existe mais de uma derivação para a sentença **t**+**t*****t**?

Demonstrando a Ambiguidade

- A ambiguidade pode ser demonstrada gerando duas árvores de derivação para uma sentença da linguagem para a gramática
- Exemplo: sentença t+t*t para a gramática do exemplo anterior



Significado: t + (t * t)



Significado: (t + t) * t

Cuidado: a ambiguidade é da gramática e não da linguagem que ela gera

Dois Tipos de Derivações

 Derivação mais à esquerda: Uma derivação é dita mais à esquerda (DME) se em cada passo é expandida a variável mais à esquerda (pode-se usar o símbolo ⇒_E)

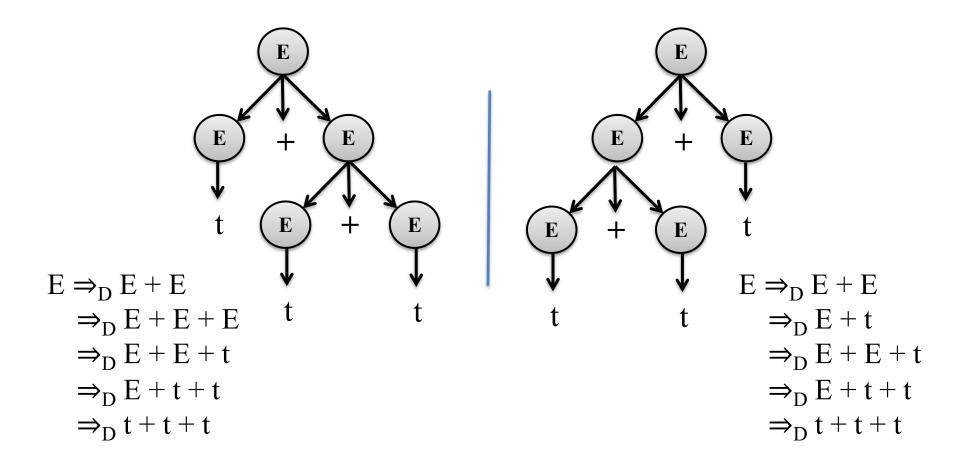
 Derivação mais à direita: Uma derivação é dita mais à direita (DMD) se em cada passo é expandida a variável mais à direita (pode-se usar o símbolo ⇒_D)

Existe uma única DME e uma única DMD correspondentes a uma AD

Ambiguidades DME/DMD

- Como existe uma única DME e uma única DMD correspondentes a uma AD, pode-se dizer que
 - uma GLC é ambígua se e somente se existe mais de uma
 DME para alguma sentença que ela gera
 - uma GLC é ambígua se e somente se existe mais de uma
 DMD para alguma sentença que ela gera

 Para a mesma gramática de expressões aritméticas, pode-se mostrar usando somente DMD que a gramática é ambígua



Linguagens Inerentemente Ambíguas

- Existem linguagens livres do contexto (LLC's) para as quais existem apenas gramáticas ambíguas, essas são chamadas de linguagens inerentemente ambíguas
- Exemplo: $L = \{ a^m b^n c^k \mid m = n \text{ ou } n = k \}$

Pode-se mostrar que qualquer GLC que gere tal linguagem terá mais de uma AD para aⁿbⁿcⁿ

Conclusão

- A detecção e remoção de ambiguidade é muito importante
 - Ex.: gramática para geração de um compilador para uma LP

Cuidado: o problema de determinar se uma GLC é ambígua é **indecidível**

 Uma linguagem pode ser gerada por inúmeras gramáticas, mas algumas gramáticas podem ser mais adequadas que outras dependendo do contexto

Existem técnicas para manipulação de GLC's que não alteram a linguagem gerada

MANIPULAÇÃO DE GLCS

Linguagens Formais e Autômatos

Manipulação de Gramáticas

 Uma gramática pode ser manipulada, sem alterar a linguagem que ela gere

- Eliminando variáveis inúteis
- Eliminando regras λ
- Eliminando regras unitárias

Variáveis Inúteis

• **Definição:** Seja uma GLC $G = (V, \Sigma, R, P)$. Uma variável $X \in V$ é dita ser uma variável **útil** se e somente se existem $u,v \in (V \cup \Sigma)^*$ e $w \in \Sigma^*$ tais que

$$P \stackrel{*}{\Rightarrow} uXv \stackrel{*}{\Rightarrow} w$$

• Exemplo: GLC $G = (V, \Sigma, R, P)$, com as seguintes regras R

$$P \rightarrow AB \mid a$$

$$B \rightarrow B \mid b$$

$$C \rightarrow c$$

Existem variáveis inúteis nessa gramática?

• Seja a GLC $G = (V, \Sigma, R, P)$, onde R é formado pelas regras

$$P \rightarrow AB \mid a$$

$$B \rightarrow B \mid b$$

$$C \rightarrow c$$

- As seguintes variáveis são inúteis
 - C: não existem u e v tais que $P \stackrel{*}{\Rightarrow} uCv$
 - A: não existe $w \in \Sigma^*$ tal que $A \stackrel{*}{\Rightarrow} w$
 - **B:** $P \Rightarrow uBv$ apenas para u = A e $v = \lambda$, e não existe $w \in \Sigma^*$ tal que $AB \stackrel{*}{\Rightarrow} w$
- Gramática equivalente sem símbolos inúteis

$$P \rightarrow a$$

Eliminação de Variáveis Inúteis

- **Definição:** Seja uma GLC G tal que $L(G) \neq \emptyset$. Existe uma GLC, equivalente à G, sem variáveis inúteis
- Seja $G = (V, \Sigma, R, P)$ tal que $L(G) \neq \emptyset$. Uma GLC G" equivalente à G, sem variáveis inúteis, pode ser construída em dois passos
 - a) Obter $G' = (V', \Sigma, R', P)$, em que
 - $V' = \{ X \in V \mid X \stackrel{*}{\Rightarrow}_G w \text{ para algum } w \in \Sigma^* \}$
 - $R' = \{ r \in R \mid r \text{ não contém símbolos de } V V' \}$
 - b) Obter $G'' = (V'', \Sigma, R'', P)$, em que
 - $V'' = \{ X \in V' \mid P \stackrel{*}{\Rightarrow}_{G'} uXv \text{ para algum } u, v \in (V' \cup \Sigma)^* \}$
 - $R'' = \{ r \in R' \mid r \text{ não contém símbolos de V'} V'' \}$

Algoritmo: parte (a)

• Algoritmo para determinar varíaveis que produzem sentenças: $\{X \in V \mid X \stackrel{*}{\Rightarrow} w \text{ para algum } w \in \Sigma^* \}$

```
Entrada: GLC G = (V, \Sigma, R, P)

Saída: I_1 = \{ X \in V \mid X \Rightarrow w \text{ para algum } w \in \Sigma^* \}

I_1 \leftarrow \emptyset

repita

\mathcal{N} \leftarrow \{ X \notin I_1 \mid X \rightarrow z \in R \text{ e } z \in (I_1 \cup \Sigma)^* \}

I_1 \leftarrow I_1 \cup \mathcal{N}

até \mathcal{N} = \emptyset

retorne I_1
```


Algoritmo: parte (b)

• Algoritmo para determinar variáveis alcançáveis a partir de P: $\{X \in V \mid P \stackrel{*}{\Rightarrow} uXv \text{ para algum } u, v \in (V \cup \Sigma)^* \}$

```
Entrada: GLC G = (V, \Sigma, R, P)

Saída: I_2 = \{ X \in V \mid P \stackrel{*}{\Rightarrow} uXv \text{ para algum } u, v \in (V \cup \Sigma)^* \}

I_2 \leftarrow \emptyset
\mathcal{N} \leftarrow \{ P \}
repita
I_2 \leftarrow I_2 \cup \mathcal{N}
\mathcal{N} \leftarrow \{ Y \notin I_2 \mid X \rightarrow uYv \text{ para algum } X \in \mathcal{N}e \text{ } u,v \in (V \cup \Sigma)^* \}
até \mathcal{N} = \emptyset
retorne I_2
```


• Seja a gramática $G = (\{A, B, C, D, E, F\}, \{0, 1\}, R, A)$, onde R contém as regras:

$$A \rightarrow ABC \mid AEF \mid BD$$

 $B \rightarrow B0 \mid 0$
 $C \rightarrow 0C \mid EB$
 $D \rightarrow 1D \mid 1$
 $E \rightarrow BE$
 $F \rightarrow 1F1 \mid 1$

Aplicando o algoritmo (a)

$$V' = \{ B, D, F, A \}$$

$$A \rightarrow BD$$

 $B \rightarrow B0 \mid 0$
 $D \rightarrow 1D \mid 1$
 $F \rightarrow 1F1 \mid 1$

Aplicando o algoritmo (b)

$$V" = \{ A, B, D \}$$

$$A \rightarrow BD$$

 $B \rightarrow B0 \mid 0$
 $D \rightarrow 1D \mid 1$

Eliminação de uma Regra

- Uma regra da forma $X \to w$, onde X não é a variável de partida, pode ser eliminada simulando sua aplicação em todos os contextos possíveis: para cada ocorrência de X do lado direito de uma regra, substitui-se por w
- **Teorema:** Seja uma GLC $G = (V, \Sigma, R, P)$. Seja $X \to w \in R, X \neq P$. Seja a GLC $G' = (V, \Sigma, R', P)$, onde R' é obtido assim
 - a) para cada regra de R em que X não ocorre do lado direito, exceto $X \to w$, coloque-a em R'
 - b) para cada regra de R da forma $Y \to x_1 X_1 x_2 X_2 ... X_n x_{n+1}$, com pelo menos uma ocorrência de X do lado direito, com $n \ge 1$ e $x_i \in [(V \{X\}) \cup \Sigma]^*$, coloque em R' todas as regras da forma $Y \to x_1 Y_1 x_2 Y_2 ... Y_n x_{n+1}$, sendo que cada Y_j pode ser X ou w, com exceção da regra $X \to w$

G' é equivalente à G

Algoritmo

Algoritmo para eliminação de uma regra

```
Entrada: (1) uma GLC G = (V, \Sigma, R, P), e

(2) uma regra X \to w \in R, X \neq P.

Saída: uma GLC G' equivalente a G, sem a regra X \to w.

R' \leftarrow \emptyset;

para cada regra Y \to z \in R faça

para cada forma de escrever z como x_1Xx_2 \dots Xx_{n+1} faça

R' \leftarrow R' \cup \{Y \to x_1wx_2 \dots wx_{n+1}\}

fimpara;

fimpara;

retorne G' = (V, \Sigma, R' - \{X \to w\}, P).
```


• Seja a gramática $G = (\{P, A, B\}, \{a, b, c\}, R, P)$, onde R contém as regras

$$P \rightarrow ABA$$

 $A \rightarrow aA \mid a$
 $B \rightarrow bBc \mid \lambda$

Como é a derivação de **aa** em G?

• A GLC G' = $({P, A, B}, {a, b, c}, R, P)$, equivalente à G, pode ser obtida eliminando-se a regra $A \rightarrow a$

$$P \rightarrow ABA \mid ABa \mid aBA \mid aBa$$

 $A \rightarrow aA \mid aa$
 $B \rightarrow bBc \mid \lambda$

Como é a derivação de aa em G'?

Variável Anulável

- **Definição:** uma variável X é **anulável** em uma GLC G se e somente se $X\Rightarrow_G \lambda$
- Algoritmo para determinar variáveis anuláveis

```
Entrada: GLC G = (V, \Sigma, R, P)

Saída: \mathcal{A} = \{ X \in V \mid X \stackrel{*}{\Rightarrow} \lambda \}

\mathcal{A} \leftarrow \emptyset

repita

\mathcal{N} \leftarrow \{ Y \notin \mathcal{A} \mid Y \rightarrow z \in R \ e \ z \in \mathcal{A}^* \}

\mathcal{A} \leftarrow \mathcal{A} \cup \mathcal{N}

até \mathcal{N} = \emptyset

retorne \mathcal{A}
```


Eliminação de Regras λ

- Seja $G = (V, \Sigma, R, P)$. Seja $G' = (V, \Sigma, R', P)$ em que R' é obtido assim
 - a) para cada regra de R cujo lado direito não contém variável anulável, exceto regra λ , coloque-a em R'
 - b) para cada regra de R da forma $Y \to x_1 X_1 x_2 X_2 ... X_n x_{n+1}$, sendo cada X_i uma variável anulável, com $n \ge 1$ e cada x_i sem variáveis anuláveis, coloque em R' todas as regras da forma $Y \to x_1 Y_1 x_2 Y_2 ... Y_n x_{n+1}$, em que cada Y_j pode ser X_j ou λ , com exceção da regra λ
 - c) Se P for anulável, coloque $P \rightarrow \lambda$ em R'

L(G) = L(G') e sua única regra λ é $P \rightarrow \lambda$ (se houver)

Algoritmo

• Algoritmo para eliminação de regras λ

```
Entrada: uma GLC G = (V, \Sigma, R, P);

Saída: uma GLC G' equivalente a G, sem regras \lambda, exceto P \to \lambda.

\mathcal{A} \leftarrow variáveis anuláveis de G;

R' \leftarrow \emptyset;

para cada regra X \to w \in R faça

para cada forma de escrever w como x_1Y_1x_2 \dots Y_nx_{n+1}, com Y_1 \dots Y_n \in \mathcal{A} faça

R' \leftarrow R' \cup \{X \to x_1x_2 \dots x_{n+1}\}

fimpara;

fimpara;

retorne G' = (V, \Sigma, R' - \{X \to \lambda \mid X \neq P\}, P).
```


• Seja a gramática $G = (\{P, A, B, C\}, \{a, b, c\}, R, P)$, onde R contém as regras

$$P \rightarrow APB \mid C$$

 $A \rightarrow AaaA \mid \lambda$
 $B \rightarrow BBb \mid C$
 $C \rightarrow cC \mid \lambda$

Obtendo o conjunto de variáveis anuláveis

$$\mathcal{A} = \{A, C, P, B\}$$

Eliminando as variáveis anuláveis

$$P \rightarrow APB \mid AP \mid AB \mid PB \mid A \mid B \mid C \mid \lambda$$

 $A \rightarrow AaaA \mid aaA \mid Aaa \mid aa$
 $B \rightarrow BBb \mid Bb \mid b \mid C$
 $C \rightarrow cC \mid c$

A regra P → P foi descartada por motivos óbvios

Variáveis Encadeadas

- **Definição:** Seja uma gramática $G = (V, \Sigma, R, P)$. Diz-se que uma variável $Z \in V$ é encadeada a uma variável $X \in V$ se Z = X ou se existe uma sequência de regras $X \rightarrow Y_1, Y_1 \rightarrow Y_2, ..., Y_n \rightarrow Z$ em R, $n \geq 0$; quando n = 0, tem-se apenas a regra $X \rightarrow Z$. Ao conjunto de todas as variáveis encadeadas a X é dado o nome de enc(X).
- Uma GLC equivalente à $G = (V, \Sigma, R, P)$, sem regras unitárias, é $G' = (V, \Sigma, R', P)$, em que

 $R' = \{ X \rightarrow w \mid \text{existe } Y \in \text{enc}(X) \text{ tal que } Y \rightarrow w \in R \text{ e } w \notin V \}$

Algoritmo

Algoritmo para obter as variáveis encadeadas de uma variável

```
Entrada: (1) GLC G = (V, \Sigma, R, P)
                (2) variável X \in V
Saída: enc(X)
       U \leftarrow \emptyset
       \mathcal{N} \leftarrow \{X\}
       repita
              U \leftarrow U \cup \mathcal{N}
              \mathcal{N} \leftarrow \{ Y \notin \mathcal{U} \mid Z \rightarrow Y \in \mathbb{R} \text{ para algum } Z \in \mathcal{N} \}
       até \mathcal{N} = \emptyset
       retorne U
```


Relembrando a GLC para expressões aritméticas

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid t$$

- Os conjuntos enc(X) para cada variável $X \in V$

Eliminando as regras unitárias

$$E \rightarrow E + T \mid T * F \mid (E) \mid t$$

$$T \rightarrow T * F \mid (E) \mid t$$

$$F \rightarrow (E) \mid t$$

Interação entre os Métodos de Eliminação

- Ao se aplicar vários tipos de eliminações em sequência, alguns tipos de regras já eliminados podem reaparecer
- Exemplos
 - a) Ao se eliminar regras λ podem aparecer regras unitárias **Ex.:** GLC com regras $A \to BC$ e $B \to \lambda$
 - b) Ao se eliminar regras unitárias podem aparecer regras λ **Ex.:** GLC com P $\rightarrow \lambda$ (P: símbolo de partida) e a regra A \rightarrow P
 - c) Ao se eliminar regras λ podem aparecer variáveis inúteis **Ex.:** o do item (a), caso $B \to \lambda$ seja a única regra de B
 - d) Ao se eliminar regras unitárias podem aparecer var. inúteis
 Ex.: GLC que contém A → B e B não aparece do lado direito de nenhuma outra regra (B torna-se inútil)

Ao se eliminar variáveis inúteis, não podem aparecer novas regras

Consistência das Eliminações

- A seguinte sequência de eliminações para uma GLC $G = (V, \Sigma, R, P)$ garante sua consistência
 - 1) Adicionar a regra $P' \rightarrow P$ se P for recursivo
 - 2) Eliminar regras λ
 - 3) Eliminar regras unitárias
 - 4) Eliminar variáveis inúteis
- Essa sequência produz uma GLC equivalente cujas regras são da seguinte forma

$$P \rightarrow \lambda$$
 se $\lambda \in L(G)$
 $X \rightarrow a$ para $a \in \Sigma$
 $X \rightarrow w$ para $|w| \ge 2$

ISSO É TUDO, PESSOAL!

Linguagens Formais e Autômatos